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Abstract

When numerically tracking implicitly-defined paths, such as is required for

homotopy continuation methods, efficiency and reliability are enhanced by

using adaptive stepsize and adaptive multiprecision methods. When pre-

cision and stepsize are adapted separately, the performance of the path

tracker can be suboptimal and, in certain circumstances, failure may oc-

cur. This paper presents a strategy for adjusting precision and stepsize

together to eliminate path failures while reducing the computational effort

expended per unit advance along the path.

This paper concerns path tracking algorithms for tracing out a one dimen-
sional path defined implicitly by n equations in n+ 1 unknowns. In particular,
we consider such algorithms when multiprecision calculations are available, that
is, when the precision of the computations can be changed during the compu-
tation. We treat a common type of path tracker that uses an Euler predictor to
step ahead along the tangent to the path and a Newton corrector to bring the
predicted point closer to the path. The objective of this paper is to describe
a heurstic for adjusting precision and stepsize together to reduce the computa-
tional cost of tracking the path while maintaining high reliability.
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In fixed precision tracking, a trial-and-error approach to setting the stepsize
is effective: shorten the step upon failure, and lengthen it upon repeated suc-
cesses. If the level of precision is inadequate, the step may fail no matter how
small the step is made, so the trial-and-error approach repeatedly shortens the
stepsize until failure is declared due to lack of progress.

In the multiprecision setting, one has the flexibility of either changing the
stepsize or changing the precision. In [1], the precision is set first, according
to rules designed so that corrector steps computed by Newton’s method have
enough digits of accuracy to ensure convergence, assuming the initial guess is
within the convergence zone. If the initial guess is not adequate, the corrector
fails, and the algorithm responds by shortening the stepsize to try again. For a
small enough step and a high enough precision, the prediction/correction cycle
must succeed and the tracker advances along the path. One would hope that the
only mode of failure is when the combination of high precision and small steps
is so severe that one gives up due to the excessive burden on computational
resources. However, in testing that algorithm, another mode of failure was
discovered: for too large a stepsize, the predicted point can be far enough from
the path that the rules set the precision too high that the algorithm fails before
a decrease in stepsize is considered. In particular, this was observed in tracking
paths defined by polynomials of high degree and occurred on the first step when
the initial stepsize given by the user was too large.

One might fix this problem by trapping the precision overflow condition and
responding with a decrease in the stepsize. While such an approach may work,
we present a more effective alternative here.

Success of a step depends on having sufficient precision and a small enough
stepsize, but increasing precision and decreasing the stepsize both inflate the
computational cost. With exact arithmetic, the stepsize is limited by the re-
quirement for the predicted point to stay within the convergence zone of the
corrector. For each stepsize below this limit, there is some minimum precision
necessary to converge within the allowed number of correction steps. This nec-
essary level of precision monotonically decreases with stepsize, approaching in
the limit the precision that just barely ensures that the final error given by New-
ton’s method equals the desired accuracy. Somewhere between these two limits,
there must be an optimal combination of stepsize and precision that minimizes
the computational effort per unit advance along the path. However, spending
too much computation to find this optimum is itself counterproductive. Accord-
ingly, in this paper, we develop a heuristic for finding a near optimum. At the
same time, we eliminate the mode of failure previously mentioned. These new
rules have been implemented in our software package, Bertini [2].

1 The Main Idea

The Euler predictor and the Newton corrector can be summed up in a single
relation, obtained by retaining only the linear terms in a Taylor series expansion
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about (zi, ti):

Hz(zi, ti)∆z +Ht(zi, ti)∆t = −H(zi, ti), (1)

(zi+1, ti+1) = (zi, ti) + (∆z,∆t). (2)

where Hz = ∂H
∂z

and Ht = ∂H
∂t

. Let (z0, t0) be the current approximation of a
point on the path along with its t value, so that H(z0, t0) ≈ 0. Given stepsize
∆t, (z1, t1) is the Euler prediction. Upon setting ∆t = 0, (zi, ti) are Newton
corrections at ti = t1 for i ≥ 2.

We can write this sequence of iterates in such a way that it is the sequence
generated by applying Newton’s method to a system f(z, t). This is useful be-
cause the analysis of Newton’s method in [1] now applies to both the prediction
step and the corrector steps. This is the main idea of this paper: the analy-
sis presented in [1] may be extended to a method that adaptively changes the
stepsize and precision simultaneously. This new method increases the security
of adaptive precision path tracking while simultaneously reducing the compu-
tational cost.

As above, let (z0, t0) be the current point approximately on the path and let
s be the stepsize. Define T = t0 + s to be the target for t for the next point on
the path and consider the augmented system

f(z, t) =

(

H(z, t)
t− T

)

= 0. (3)

Applying Newton’s method to f(z, t), we produce the sequence (zi+1, ti+1) by
solving

[

Hz(zi, ti) Ht(zi, ti)
0 1

][

∆z
∆t

]

= −

[

H(zi, ti)
ti − T

]

, (4)

(zi+1, ti+1) = (zi, ti) + (∆z,∆t). (5)

It is easy to confirm that the sequence of iterates produced in this way are
exactly the same as before: the first iterate is just the Euler prediction and
subsequent ones are Newton corrections at t = T .

2 New Rules for Stepsize

2.1 Summary of adaptive precision method

The method of [1] depends on the enforcement of three rules that determine
when precision should be changed to maintain the desired path-tracking accu-
racy. Since the present method extends that of [1], we follow the notation of
that article. In particular, let P be the number of digits of precision, so that
u = 10−P is the unit roundoff error. Further, let 10−τ be the accuracy to which

3



we wish to track the path, let ‖ · ‖ denote a vector norm and its induced sub-
multiplicative matrix norm, let ‖d‖ be the most recent Newton residual, and let
N be the maximum number of Newton iterations to perform.

Let F (z) : C
n → C

n be continuously differentiable, and let J(z) denote its
Jacobian matrix. Due to the nature of finite precision, there is error associated
with evaluating the function and the Jacobian and also in solving a system of
linear equations. Let ψ(z, u) and φ(z, u) be the functions that account for the
errors in evaluating F (z) and J(z), respectively, and let E be the constant that
accounts for the growth in errors when solving a system of linear equations.
Suppose that the error functions ψ and φ are of the form ψ = Ψu and φ = Φu.
Methods for approximating Ψ and Φ are given in [1]. Since the approximations
used in the rules may underestimate the true values, extra digits, called safety
digits in [1], are included. Let σ1 and σ2 denote the number of safety digits
requested for the rules described below.

The first rule requires that the error perturbed Jacobian matrix needs to be
nonsingular, namely

P > σ1 + log10[‖J
−1‖E(‖J‖ + Φ)]. (A)

This rule is applied before entering the corrector loop when ‖d‖ is not yet
available.

After the first pass through the corrector, ‖d‖ becomes available, and Eq. A

is superceded by a more restrictive rule requiring that the corrector must con-
verge within N iterations. Define D = log10

[

‖J−1‖((2 + E)‖J‖ + EΦ) + 1
]

and
suppose that there are (N − i) Newton iterations remaining, the second rule is

P > σ1 +D + (τ + log10 ‖d‖)/(N − i). (B)

Roughly speaking, D is the number of digits lost to numerical error in com-
puting corrections. The remaining digits of accuracy improve our approxi-
mate solution. If every iteration adds as many correct digits as the last term,
(τ + log10 ‖d‖)/(N − i), then the final tolerance 10−τ will be reached within
(N − i) remaining iterations. Thus, setting P in accordance with Eq. B, gives
enough precision to enable convergence.

The third rule requires that the final accuracy of the corrector be within the
required tolerance, namely

P > σ2 + τ + log10(‖J
−1‖Ψ + ‖z‖). (C)

Full details regarding the theoretical development of these rules, along with
examples coming from the specific implementation of this method within Bertini
[2] may be found in [1].

2.2 Combining adaptive precision and adaptive stepsize

In [1], Eq. B only applies to the corrector steps. By using the augmented system
defined by Eq. 3, this rule applies to the Euler prediction step since it is just
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the initial Newton iteration. Including the prediction step as the first Newton
iteration requires N to be increased by one. This setup now includes another
parameter that we can vary besides the precision P , namely the stepsize s. The
rest of this section describes how to adaptively change the precision P and the
stepsize s together.

On the first iteration, the Euler prediction, ‖d‖ = ‖(∆z,∆t)‖ is directly
proportional to s, say ‖d‖ = a|s|. Accordingly, we may rewrite Eq. B for the
first iteration as

P − log10 |s|/N > σ1 +D + (τ + log10 a)/N, (9)

or, letting |s| = 10−ξ, as

P + ξ/N > σ1 +D + (τ + log10 a)/N. (10)

There are two ways to satisfy this inequality: raise precision P or decrease the
stepsize by raising ξ.

Suppose that C(P ) is the cost of computing N iterations in precision P .
Then the cost per unit advance along the path is C(P )/|s|. By minimizing
C(P )/|s| subject to Eq. 10, P and s can be set optimally. One thing to remember
is that this rule assumes that we are within the convergence zone of Newton’s
method. If not, additional precision will not be effective and the stepsize must
be cut. Therefore, we must retain the previous algorithmic step of cutting the
stepsize when convergence is not obtained within N Newton iterations.

2.3 Outline of the algorithm

The path tracking algorithm presented in this article assumes that the path
tracker can reach the final value tf without passing through an exact singu-
larity on the path. When using homotopies to solve polynomial system, with
probability one, no path passes exactly through a singularity, except possibly at
the end. The example presented in Section 3.3 demonstrates that near singular
conditions do occur during path tracking away from the end of the path.

The algorithm is outlined in the flowchart presented in Figure 1. Some
key parts presented in the diagram require additional explanation. As in [1],
there is a maximum number of steps and a maximum precision, Pmax, allowed.
These limits prevent computational waste and guarantee the termination of
the algorithm. “Setup f(z, t)” constructs f(z, t) described by Eq. 3 combining
the prediction step and correction steps. If the step in t would go beyond tf ,
then the stepsize is adjusted to land exactly on tf . The next box, labeled
“Correct,” computes a Newton correction. In the case that a correction cannot
be computed due to singularity of the Jacobian matrix at the current precision,
the algorithm branches to “Call convergence error.” Otherwise, the results of
the correction are checked using safety rules defined by Eqs. B and C, invoking
“Call safety error,” if either criteria is violated. If the safety rules are met, the
algorithm checks for convergence to within 10−τ , either proceeding to update
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or considering another correction cycle, as necessary. The remaining key parts,
namely “Call convergence error,” “Call safety error,” and “Call step success,”
are described below.

When the Newton iterations fail to converge, the convergence error algo-
rithm is executed. This algorithm decreases the stepsize as in the adaptive
stepsize method. The new stepsize is then compared with the predetermined
minimium stepsize for the given value of the precision, as discussed in [1], to
avoid stalling on the path. The values used for the minimum stepsize, ε(P ), are
given in Section 3.1.

Algorithm 1. convergence error(Pin, sin, r;Pout, sout)

Input:
• Pin: current precision.
• sin: current stepsize.
• r: step adjustment factor, between 0 and 1, exclusive.

Output:
• Pout: new precision.
• sout: new stepsize.

Algorithm:
Initialize Pout := Pin and sout := r ∗ sin.
While sout < ε(Pout)

Increment Pout to the next available precision.

The safety error and step success algorithms both rely upon an algorithm,
called minimize cost, to adjust the precision and stepsize to avoid stalling on the
path, satisfy Eq. 9, and reduce the cost. The precision selected by this algorithm
is between the current precision and the maximum precision, inclusively, and
the stepsize selected is not larger than the current stepsize.

Algorithm 2. minimize cost(Pin, sin;Pout, sout)

Input:
• Pin: current precision.
• sin: current stepsize.

Output:
• Pout: new precision.
• sout: new stepsize.

Algorithm:
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Initialize G := ∅.
For each P from Pin to the maximum precision, Pmax,

Compute |s| that satisfies Eq. 9 as an equation,
Append (P,min(|s|, |sin|)) to G if min(|s|, |sin|) > ε(P ).

If G = ∅,
Set Pout := Pmax + 1 and sout := sin.

Otherwise,
Let (P, |s|) be the pair that minimizes C(P )/|s| among the choices in G,
Set Pout := P and sout = |s| ∗ sin/|sin|.

When either Eqs. B or C are not satisfied, the safety error algorithm is
executed. This algorithm increases the precision and decreases the stepsize to
satisfy both criteria. If there is no change in precision, the correction step is
merely rescaled to the new stepsize and the algorithm proceeds along branch a.
On the other hand, if precision is changed, the algorithm takes branch b to
circulate back to recompute the correction at higher precision.

Algorithm 3. safety error(Pin, sin, din;Pout, sout, dout)

Input:
• Pin: current precision.
• sin: current stepsize.
• din: current correction, (∆z,∆t).

Output:
• Pout: new precision.
• sout: new stepsize.
• dout: new correction.

Algorithm:
Initialize Pout := Pin, sout := sin, and dout := din.
While Eq. C is not satisfied,

Increment Pout to the next available precision.
If this is the first pass through the correction loop,

(Pout, sout) := minimize cost(Pout, sout).
Otherwise, while Eq. B is not satisfied,

Increment Pout to the next available precision.
If Pout = Pin

Rescale the correction: dout = din ∗ sout/sin,
Reset f(z, t) to match the new stepsize, sout,
Exit on branch a.

Otherwise,
Exit on branch b.
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When a step is successfully completed, the step success algorithm is exe-
cuted. It tries to reduce the computational cost of the next step by decreasing
precision or increasing the stepsize. However, the extent of these changes is
limited by the necessity of conforming to Eqs. 9 and C. Moreover, to avoid
acting too aggressively, which might waste computation by failing during the
next correction cycle, the frequency of relaxation in precision or stepsize is lim-
ited. In particular, if there have been M successful steps in a row, the stepsize
is allowed to increase, and if there have been L successful steps in a row, the
precision is allowed to decrease. The number of successful steps in a row is reset
back to zero after the number of consecutive successful steps reaches the larger
of M and L.

Algorithm 4. step success(numSuccessin, Pin, sin, r,M,L;
numSuccessout, Pout, sout)

Input:
• numSuccessin: current number of successful steps in a row.
• Pin: current precision.
• sin: current stepsize.
• r: step adjustment factor, between 0 and 1, exclusive.
• M : number of consecutive successful steps before an increase in stepsize.
• L: number of consecutive successful steps before a decrease in precision.

Output:
• numSuccessout: new number of successful steps in a row.
• Pout: new precision.
• sout: new stepsize.

Algorithm:
Initialize numSuccessout := numSuccessin + 1, Pout := Pin, and sout := sin.
If numSuccessout = M

sout := sout/r.
If numSuccessout = L and Pout is not the smallest available precision

Set Pout to be the next lower available precision.
If numSuccessout = max(M,L)

numSuccessout := 0.
(Pout, sout) := minimize cost(Pout, sout).

For completeness, we note that in the final line of algorithm step success, we
use the historical data from the most recent step along the path; that is, we use
J from the last Newton iteration and ‖d‖ from the first Newton iteration of the
previous correction cycle.
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Figure 1: Adaptive precision path tracker with stepsize control. The subroutine
calls are explained in the text.
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IEEE
double MPFR

bits of precision 52 64 96 128 160 192
P 16 19 28 38 48 57
ε(P ) 10−14 10−16 10−25 10−34 10−43 10−52

Table 1: Values of ε(P )

3 Implementation Details and Computational Ex-

periments

Adaptive multiprecision tracking with stepsize control is implemented in the
software package Bertini [2]. Though the original adaptive precision method
found in [1] was first implemented in Bertini beta, all examples discussed below
were run on the common platform of Bertini v1.1 using an Opteron 250 processor
running 64-bit Linux.

3.1 Implementation Details

Bertini uses MPFR for multiprecision arithmetic, which allows for precision to
be changed in discrete packets of 32 bits. At various levels of precision in MPFR,
we computed the time needed to perform common operations used in homotopy
continuation, e.g. straight-line program evaluation, matrix multiplication and
linear solving. These timings were compared with the time needed to perform
these operations using IEEE double precision. Based on this data, we computed
the cost function C(P ). With P in digits of precision, the cost function used in
the following examples was

C(P ) =

{

1, if P = 16 (i.e., corresponds to double precision);
10.35 + 0.13P, otherwise.

As new versions of MPFR are released, this cost function will be recomputed.

In the examples below, σ1 = σ2 = 1, M = 5, L = 10, N = 2, τ = 6, and the
values for ε(P ) are presented in Table 1. The maximum precision, Pmax, was
set to 308 digits corresponding to 1024 bits of precision.

3.2 Comparing the methods

In Section 5.5 of [1], a polynomial system arising from the inverse kinematics
problem for a general six-revolute serial-link robot [3] is considered. Utilizing
the power series endgame with the same settings as in [1], Table 2 indicates the
average time required to solve that system with fixed precision, the method of
[1], and the new method of this paper.

The method described in this paper causes paths to be tracked using double
precision longer than the method of [1] by decreasing the stepsize rather than
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minimum fixed precision method of [1] new method
96 bits 184.01 38.54 32.73

Table 2: Comparison for average time of 10 runs of the IPP system, in seconds.

automatically relying on the power (and cost) of higher precision when numerical
difficulties are encountered. This resulted in a 15% improvement in speed for
this example since double precision computation is so much less costly than
multiple precision computation.

3.3 Near singular conditions

For the homotopies utilized, with probability one, the paths do not pass directly
through a singularity on (0, 1]. Even though the Jacobian is still nonsingular,
higher precision may be needed to reveal this. It is not known, a priori, how
many paths travel near a singularity for a given homotopy.

To demonstrate that near singularity conditions do exist, consider the for-
mulation of the nine-point path synthesis problem for four-bar linkages in [4].
Utilizing the 2-homogeneous structure and the two-fold symmetry, the homo-
topy consists of 143, 360 paths of which 4326 lead to nondegenerate solutions.
The precision points were selected at random and the homotopy was created
using random numbers. During the tracking, 1184 of the total 143, 360 paths
(0.83%) needed to use precision higher than double to track past a near singu-
larity before returning back to double precision. Moreover, 680 paths (0.47%
of the total) needed to use at least 96 bits of precision to track past a near
singularity before returning to double precision.

Figure 2 is a graph of the log of the condition number, precision and stepsize
in relation to tracking parameter t for a typical path having a near singularity
and requiring the use of at least 96 bits of precision before returning to double
precision.

4 Conclusion

Adaptive stepsize and adaptive multiprecision techniques may be employed to
enhance the efficiency and especially the reliability of path-tracking methods,
as with homotopy continuation. The performance of a tracking method can be
improved by considering both adaptive procedures simultaneously, as opposed
to handling them separately. This paper provides a strategy for adjusting pre-
cision and stepsize together, yielding both higher reliability and a reduction in
computational burden. This technique is detailed in a flowchart, and the perfor-
mance of the implementation of this technique in the Bertini software package
is demonstrated with two examples.
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Figure 2: Graph of the log of the condition number, precision and stepsize
against the tracking parameter t
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