
Efficient path tracking methods

Daniel J. Bates ∗ Jonathan D. Hauenstein†

Andrew J. Sommese ‡

April 21, 2010

Abstract

Path tracking is the fundamental computational tool in homotopy con-
tinuation and is therefore key in most algorithms in the emerging
field of numerical algebraic geometry. Though the basic notions of
predictor-corrector methods have been known for years, there is still
much to be considered, particularly in the specialized algebraic setting
of solving polynomial systems. In this article, the effects of the choice
of predictor method on the performance of a tracker is analyzed, and
details for using Runge-Kutta methods in conjunction with adaptive
precision are provided. These methods have been implemented in the
Bertini software package, and several examples are described.
Keywords. path tracking, homotopy continuation, numerical alge-
braic geometry, polynomial systems, ordinary differential equations,
Euler’s method, Runge-Kutta methods, precision, adaptive precision.
AMS Subject Classification. 65H10, 65H20, 65E05, 65L06

∗Department of Mathematics, Colorado State University, Fort Collins, CO 80523
(bates@math.colostate.edu, http://www.math.colostate.edu/∼bates). This author was
supported by the Institute for Mathematics and Its Applications (IMA) and NSF DMS-
0914674.
†Department of Mathematics, Mailstop 3368, Texas A&M University, College Station,

TX 77843 (jhauenst@math.tamu.edu, www.math.tamu.edu/∼jhauenst). This author was
supported by the Fields Institute, Texas A&M University, the Duncan Chair of the Uni-
versity of Notre Dame, and NSF grant DMS-0712910.
‡Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556

(sommese@nd.edu, http://www.nd.edu/∼sommese). This author was supported by the
Duncan Chair of the University of Notre Dame; and NSF grants DMS-0410047 and NSF
DMS-0712910.

1 Introduction

Homotopy continuation is one way to approximate the zero-dimensional so-
lutions of a polynomial system f : CN → CN . The idea is to cast f(z) as a
member of a family of polynomial systems of the same size, one of which, say
g(z) has known solutions. There are several common ways of doing so [15].
We may then build a homotopy, H : CN × C → CN , connecting f(z) (at
t = 0) to g(z) (at t = 1).

In particular, let H(z, t) be a system of N polynomials with (z, t) ∈
CN × C such that given any element x∗ of the finite set F of nonsingular
isolated solutions of H(z, 1) = 0, the connected component C of the set{

(z, t) ∈ CN × (0, 1] |H(z, t) = 0
}

(1)

that contains x∗ is the graph of a differentiable map t→ x(t) with x(1) = x∗.
We say that H(z, t) is a good homotopy with respect to F and that x(t) is
the solution path starting at x∗ ∈ F .

To approximate the solutions of f(z), the task is to numerically follow
each of these solution paths from the known solutions F at t = 1 to those we
desire at t = 0. Predictor/corrector methods, which make use of ordinary
differential equation solvers for prediction and Newton’s method for correc-
tions, are a common choice. More details about homotopy continuation and
the construction of homotopies may be found in [1, 10, 11, 15].

In this article, we consider the consequences of various choices of a dif-
ferential equations solver and explain how to incorporate adaptive precision
methodologies into Runge-Kutta methods. One of the two main contribu-
tions of this article is that it provides a means for applying a combined
adaptive precision/adaptive steplength technique to higher-order predictor
methods. With fixed precision, numerical methods such as homotopy con-
tinuation will fail in the proximity of a singularity (a point (z′, t′) at which
the Jacobian of the polynomial system is singular). This is due to the loss
of accuracy caused by the ill-conditioning of the Jacobian matrix at (z′, t′).
For the standard homotopies [10, 15] the occurrence of singularities along a
path for a particular problem is a probability zero event. Since the number
of digits used in computer arithmetic is limited, even for t not near zero,
paths can come close to singularities to cause numerical difficulty. Adaptive
precision methods go a significant way towards countering the numerical
difficulties of these almost singularities.

Unnoticed path crossing and path failure are the two most common
adverse effects of using a fixed level of precision. In particular, singularities
occur when two paths cross. In the neighborhood of such a singularity,

2

the accuracy of predictor and corrector methods drops, so it sometimes
happens that the tracker will inadvertently correct to the wrong path, which
will result in an incorrect set of endpoints at t = 0. Similarly, near a
singularity, inaccurate predictions can cause a path tracker to repeatedly
cut the steplength until the steplength drops below the threshold at which
the tracker declares a path failure. The use of adaptive precision during path
tracking mitigates these adverse effects of path tracking caused by the use
of fixed precision. This article provides the first known set of heuristics for
applying adaptive precision methods in the setting of higher-order predictor
methods. This method indicates how best to choose both precision levels
and steplengths to provide security and efficiency.

Though one familiar with numerical techniques for solving differential
equations would expect higher order methods to be more efficient, Eu-
ler/Newton methods appear to be usual methods in the algebraic predic-
tor/corrector setting. The results in this article indicate that there is indeed
value in using higher-order methods such as the fifth-order Runge-Kutta-
Fehlberg method (RKF45). This article underlines the need to bring the
experience of the numerical analysis community to bear on the implemen-
tation of the algorithms of the numerical algebraic geometry community.

In §2, we recall Euler’s method as well as higher-order methods. In §3,
we indicate how to adapt precision on the fly while using higher-order meth-
ods and also how error control is different with Runge-Kutta methods than
with the standard Euler/Newton scheme. Finally, computational evidence
supporting the value of higher-order methods in this situation is provided
in §4.

2 Overview of ODE methods

Runge-Kutta methods are well-suited for use as the prediction method for
homotopy continuation path tracking. They only require an initial value to
start the method, do not require the evaluation of higher-order derivatives,
but can still have local truncation errors of any order. Runge-Kutta methods
are classified based on both the number of function evaluations and the order
of the local truncation error. For example, Euler’s method is the first order
Runge-Kutta method requiring one function evaluation, while the classical
fourth order Runge-Kutta method (RK4) requires four function evaluations.

One way to monitor the local truncation error is to evaluate the method
using a stepsize s and then evaluate the method twice each with stepsize s

2 .
An error estimate is obtained by comparing the two approximations.

3

Another way to monitor the local truncation error is to use embedded
Runge-Kutta methods. Embedded Runge-Kutta methods, developed by
Fehlberg [7, 8], evaluate multiple Runge-Kutta approximations simultane-
ously. The fifth-order Runge-Kutta-Fehlberg method (RKF45) utilizes six
function evaluations to compute both a fourth- and a fifth-order approxima-
tion. The difference between the two approximations provides an estimate
for the local truncation error. RKF45 is compared with several other em-
bedded Runge-Kutta methods in § 4.

See [9, 14] for more information.

3 Adaptive stepsize and precision with higher-order
methods

The adaptive precision tracking methods of [3, 4] describe rules for changing
precision based on the local behavior of the path being followed. The rules
provided in [3] for changing precision are based on a careful analysis of the
Newton correction scheme. This analysis is extended to the Euler prediction
step in [4]. Heuristics for changing the stepsize and precision together to
approximate the optimal settings are also provided in that article. The
following summarizes the methods of [3, 4] and extends this analysis to
predictor methods with error estimates.

3.1 Summary of the adaptive precision methods

The adaptive precision methods of [3, 4] require the enforcement of three
rules to maintain accuracy. Following the notation of those articles, let P
denote the number of digits of precision and u = 10−P be the unit roundoff
error. Let 10−τ be the accuracy to track the path and N be the maxi-
mum number of Newton iterations per step. Let ‖ · ‖ be a vector norm
and its induced submultiplicative matrix norm and ‖d‖ be the most recent
error approximation (e.g., local truncation error approximation or Newton
residual).

For a continuously differentiable function F (z) : Cn → Cn, let J(z)
denote its Jacobian matrix, i.e., the matrix of partial derivatives. Let ψ(z, u)
and φ(z, u) account for the errors in evaluating F (z) and J(z), respectively,
and suppose that they are of the form ψ = Ψu and φ = Φu. The values Ψ
and Φ can be approximated using methods presented in [3]. Let E account
for the growth in errors for solving a system of linear equations. Extra
digits, called safety digits and denoted σ1 and σ2, are used to account for

4

underestimations of the values required.
The first rule asserts that the error perturbed Jacobian matrix J must

be nonsingular, namely

P > σ1 + log10[‖J−1‖E(‖J‖+ Φ)]. (A)

With an error approximation ‖d‖, the second rule asserts that the cor-
rector must be able to converge using (N − i) Newton iterations. By letting
D = log10

[
‖J−1‖((2 + E)‖J‖+ EΦ) + 1

]
, the second rule is

P > σ1 +D + (τ + log10 ‖d‖)/(N − i). (B)

The final rule asserts that the final accuracy of the corrector must be
smaller than the required tolerance, namely

P > σ2 + τ + log10(‖J−1‖Ψ + ‖z‖). (C)

In [4], Eq. B is used to relate stepsize and precision. To do this, the Euler
prediction is written as the initial Newton iteration creating a residual from
this initial iteration that is proportional to the stepsize s, i.e., ‖d‖ = a|s|.
By writing |s| = 10−ξ, Eq. B reduces to

P + ξ/N > σ1 +D + (τ + log10 a)/N, (5)

which can be satisfied by either increasing the precision P or decreasing
stepsize by increasing ξ. The values of P and ξ are set to attempt to minimize
the cost per unit advance along the path.

3.2 Outline of the algorithm

The adaptive precision rules presented in [3, 4] and summarized in the previ-
ous section extend to prediction methods that provide error estimates. Sup-
pose that the prediction method computes a local error estimate of order
p. That is, using a stepsize s, the local error estimate ‖d‖ is approximately
proportional to |s|p+1.

As discussed in [4], Eq. A is superseded by Eq. B upon knowing a local
error estimate. Hence, Eq. B is applied for i = 0 using the local error
estimate ‖d‖ provided by the prediction method. If this error estimate ‖d‖
is smaller than the required tolerance, we accept the prediction without any

5

local error approximation # ofName
order order evaluations

Heun-Euler (HE12) [9, § 8.3] 1 2 2
Norsett (RKN34) [6] 3 4 5
Fehlberg (RKF45) [9, § 8.3] 4 5 6
Cash-Karp (RKCK45) [5] 4 5 6
Dormand-Prince (RKDP56) [13] 5 6 8
Verner (RKV67) [16] 6 7 10

Table 1: Summary of embedded Runge-Kutta methods implemented in
Bertini

Newton correction steps. Otherwise, Newton iterations are used and Eq. B
is applied for i > 0 using the Newton residual of the last iteration as the
local error estimate. To validate the accuracy of the prediction, Newton
iterations are also applied if there are M consecutive steps for which the
prediction error is smaller than the required tolerance. In Bertini, M has a
default value of 5.

Equation B also is used to relate stepsize and precision. Letting |s| =
10−ξ and ‖d‖ = a|s|p+1, Eq. B becomes

P + (p+ 1)ξ/N > σ1 +D + (τ + log10 a)/N (6)

for the prediction (i.e., i = 0). The values of P and ξ are set to attempt to
minimize the cost per unit advance along the path.

4 Computational evidence for using higher-order
methods

Adaptive precision tracking using higher-order predictor methods is imple-
mented in the software package Bertini [2]. The embedded Runge-Kutta
predictor methods available in Bertini are presented in Table 1.

The non-parallel examples presented here were run on a 2.4 GHz Opteron
250 processor with 64-bit Linux. The parallel examples were run on a clus-
ter consisting of a manager that uses one core of a Xeon 5410 processor
and 8 computing nodes each containing two 2.33 GHz quad-core Xeon 5410
processors running 64-bit Linux, i.e., one manager and 64 workers.

6

method of [4]
ODE method 96 bit fixed precision method of [3] time nfe/path

Euler 184.01 38.54 32.73 1296

ODE method 96 bit fixed precision new method nfe/path
HE12 80.12 17.97 550
RKN34 62.21 16.96 454
RKF45 55.01 14.48 445
RKCK45 49.13 14.13 403
RKDP56 56.50 16.41 461
RKV67 66.46 16.64 620

Table 2: Comparison of the average time of 10 runs of the IPP system, in
seconds

4.1 Comparing the methods

Section 5.5 of [3] and Section 3.2 of [4] describe solving a polynomial sys-
tem arising from the inverse kinematics problem for a general size-revolute
serial-link robot [12]. Using the same settings, Table 2 compares the meth-
ods of [3] and [4], using the minimum fixed precision (96 bits) with various
predictor methods, and the adaptive precision method of this paper. The
column labeled “nfe/path” presents the average number of function eval-
uations per path. For each function evaluation, there is an associated set
of linear equations to solve. Together, function evaluation and solving the
associated linear equations are by far the most expensive part of homotopy
continuation.

4.2 A family of systems

An example of a family of systems where every path leads to a nonsingular
solution is the family of economics problems derived from [11, § 7]. The
original presentation of the polynomial system is

Gn(x1, . . . , xn) =

xn−1xn − 1
(xn−2 + x1xn−1)xn − 1

(xn−3 + x1xn−2 + x2xn−1)xn − 1
...

(x1 + x1x2 + · · ·+ xn−2xn−1)xn − 1
x1 + x2 + · · ·+ xn−1 + 1

= 0. (7)

7

n paths Euler HE12 RKN34 RKF45 RKCK45 RKDP56 RKV67
10 256 12.2s 2.5s 1.7s 1.7s 1.4s 1.8s 2.1s
11 512 21.5s 4.6s 3.2s 3.2s 2.6s 3.5s 4.6s
12 1024 56.7s 11.8s 8.5s 8.7s 6.9s 9.2s 11.0s
13 2048 3m3s 32.0s 21.4s 21.6s 16.9s 24.1s 28.9s
14 4096 9m3s 1m32s 1m9s 1m12s 54.1s 1m21s 1m35s
15 8192 15m41s 2m49s 2m4s 2m10s 1m39s 2m22s 2m46s
16 16,384 41m51s 7m3s 5m7s 5m25s 4m15s 6m2s 7m12s
17 32,768 1h37m35s 16m46s 12m50s 14m11s 10m58s 15m49s 19m33s
18 65,536 4h6m40s 42m3s 30m52s 34m19s 25m21s 36m48s 52m6s

Table 3: Comparison for solving Fn using serial processing

This system is reduced in [11] by noting that the first equation implies that
xn−1 6= 0 so that xn = 1

xn−1
. Upon substitution and clearing denominators

for the remaining equations, we obtain the polynomial system

Fn(x1, . . . , xn−1) =

xn−2 + x1xn−1 − xn−1

xn−3 + x1xn−2 + x2xn−1 − xn−1
...

x1 + x1x2 + · · ·+ xn−2xn−1 − xn−1

x1 + x2 + · · ·+ xn−1 + 1

 = 0. (8)

For all n, Fn has total degree 2n−2, which is equal to the number of nonsin-
gular solutions.

The system Fn for n = 10, . . . , 18 was solved using various prediction
methods with a tracking tolerance of 10−7 and a final endgame convergence
tolerance of 10−10. The results are summarized in Table 3.

4.3 Solving a large system

Section 3.3 of [4] describes solving a polynomial system arising from the
nine-point path synthesis problem [17] using a homotopy that utilizes its
2-homogeneous structure and two-fold symmetry. This system was solved
using various prediction methods with a tracking tolerance of 10−7 and a
final endgame convergence tolerance of 10−10 in parallel. The results are
summarized in Table 4.

8

ODE method time
Euler 28.46
HE12 8.48

RKN34 5.93
RKF45 6.32

RKCK45 5.73
RKDP56 7.02
RKV67 8.77

Table 4: Comparison for solving nine-point path synthesis problem, in min-
utes

5 Conclusions

This article introduces the use of adaptive precision Runge-Kutta methods
in homotopy continuation. Such higher-order methods are not new in their
own right, but the addition of adaptive precision techniques to Runge-Kutta
methods is new. This article also shows that higher order methods are worth
using in this setting.

This article will certainly not be the final article on efficiency in ho-
motopy continuation; indeed, much remains to be studied, e.g., multistep
methods are not covered in this article. Finally, some of the ideas of this
article, particularly regarding higher-order methods, carry over to the case
of homotopy continuation for general nonlinear analytic functions.

References

[1] E.L. Allgower and K. Georg. Numerical continuation methods, An
introduction. Springer Series in Computational Mathematics, vol. 13,
Springer-Verlag, Berlin, 1990.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler.
Bertini: Software for Numerical Algebraic Geometry. Available at
http://www.nd.edu/∼sommese/bertini.

[3] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Adap-
tive multiprecision path tracking. SIAM J. Numer. Anal., 46:722–746,
2008.

[4] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Step-
size control for adaptive multiprecision path tracking. To appear in

9

Interactions of Classical and Numerical Algebraic Geometry, D. Bates,
G. Besana, S. Di Rocco, and C. Wampler (eds.), Contemporary Math-
ematics, 2009.

[5] J.R. Cash and A.H. Karp. A variable order Runge-Kutta method for ini-
tial value problems with rapidly varying right-hand sides. ACM Trans.
Math. Software, 16(3): 201–222, 1990.

[6] W.H. Enright, K.R. Jackson, S.P. Nørsett, and P.G. Thomsen. In-
terpolants for Runge-Kutta formulas. ACM Trans. Math. Software,
12(3):193–218, 1986.

[7] E. Fehlberg. Klassische Runge-Kutta-Formeln fünfter und sieben-
ter Ordnung mit Schrittweiten-Kontrolle. Computing (Arch. Elektron.
Rechnen), 4:93–106, 1969.

[8] E. Fehlberg. Klassische Runge-Kutta-Formeln vierter und niedrigerer
Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf
Wärmeleitungsprobleme. Computing (Arch. Elektron. Rechnen), 6:65–
71, 1970.

[9] D. Kincaid and W. Cheney. Numerical analysis : mathematics of scien-
tific computing. Brooks/Cole Publishing Co., Pacific Grove, CA, third
edition, 2002.

[10] T.Y. Li. Numerical solution of polynomial systems by homotopy contin-
uation methods. In Handbook of Numerical Analysis, Volume XI, Spe-
cial Volume: Foundations of Computational Mathematics, F. Cucker,
ed., North-Holland, 2003, 209–304.

[11] A.P. Morgan. Solving polynomial systems using continuation for engi-
neering and scientific problems. Prentice Hall Inc., Englewood Cliffs,
NJ, 1987. Reprinted as Classics in Applied Mathematics (2009) 57,
SIAM.

[12] A.P. Morgan and A.J. Sommese. Computing all solutions to poly-
nomial systems using homotopy continuation. Appl. Math. Comput.,
24(2):115–138, 1987. Errata: Appl. Math. Comput., 51:209, 1992.

[13] P.J. Prince and J.R. Dormand. High order embedded Runge-Kutta
formulae. J. Comput. Appl. Math., 7(1):67–75, 1981.

[14] L.F. Shampine. Numerical solution of ordinary differential equations.
Chapman & Hall, New York, 1994.

10

[15] A.J. Sommese and C.W. Wampler. The Numerical Solution to Systems
of Polynomials Arising in Engineering and Science. World Scientific,
Singapore, 2005.

[16] J.H. Verner. Explicit Runge-Kutta methods with estimates of the local
truncation error, SIAM J. Numer. Anal., 15(4):772–790, 1978.

[17] C.W. Wampler, A. Morgan, and A.J. Sommese. Complete solution of
the nine-point path synthesis problem for four-bar linkages, ASME
Journal of Mechanical Design 114(1): 153–159, 1992.

11

