Math 526 - Algebraic Geometry Homework \# 7

 Due: Tuesday, November 26, 2013 8:30 am

 Due: Tuesday, November 26, 2013 8:30 am}

Problem 1. Let $I=\left\langle x^{2}, x y\right\rangle \subset \mathbb{C}[x, y]$.
a. For each $\ell \geq 1$, show that $J_{\ell}=\left\langle x^{2}, x y, y^{\ell}\right\rangle$ is primary and $I=\langle x\rangle \cap J_{\ell}$. This shows that an ideal can have infinitely many different primary decompositions.
b. Compute the standard monomials of $I,\langle x\rangle$ and J_{ℓ} with respect to any graded monomial ordering.

Problem 2. For $I=\left\langle x y-x z, x^{2}+y^{2}-2 z^{2}\right\rangle \subset \mathbb{C}[x, y, z]$, compute $\mathcal{V}(I) \subset \mathbb{P}^{2}(\mathbb{C})$. Then, for each of the following affine patches U in $\mathbb{P}^{2}(\mathbb{C})$, compute $\mathcal{V}(I) \cap U$:
a. $U=\{x \neq 0\}$,
b. $U=\{y \neq 0\}$,
c. $U=\{z \neq 0\}$,
d. $U=\{x+3 y-2 z \neq 0\}$.

Problem 3. Construct the triple Segre product, that is, given ℓ, m, and n, determine P and morphism ϕ so that

$$
\phi: \mathbb{P}^{\ell}(k) \times \mathbb{P}^{m}(k) \times \mathbb{P}^{n}(k) \longleftrightarrow \mathbb{P}^{P}(k) .
$$

