Math 526 – Algebraic Geometry Homework # 7 Due: Tuesday, November 26, 2013 8:30 am

Problem 1. Let $I = \langle x^2, xy \rangle \subset \mathbb{C}[x, y]$.

- a. For each $\ell \geq 1$, show that $J_{\ell} = \langle x^2, xy, y^{\ell} \rangle$ is primary and $I = \langle x \rangle \cap J_{\ell}$. This shows that an ideal can have infinitely many different primary decompositions.
- b. Compute the standard monomials of I, $\langle x \rangle$ and J_{ℓ} with respect to any graded monomial ordering.

Problem 2. For $I = \langle xy - xz, x^2 + y^2 - 2z^2 \rangle \subset \mathbb{C}[x, y, z]$, compute $\mathcal{V}(I) \subset \mathbb{P}^2(\mathbb{C})$. Then, for each of the following affine patches U in $\mathbb{P}^2(\mathbb{C})$, compute $\mathcal{V}(I) \cap U$:

a. $U = \{x \neq 0\},\$ b. $U = \{y \neq 0\},\$ c. $U = \{z \neq 0\},\$ d. $U = \{x + 3y - 2z \neq 0\}.$

Problem 3. Construct the triple Segre product, that is, given ℓ , m, and n, determine P and morphism ϕ so that

$$\phi: \mathbb{P}^{\ell}(k) \times \mathbb{P}^{m}(k) \times \mathbb{P}^{n}(k) \hookrightarrow \mathbb{P}^{P}(k).$$