Math 526 – Algebraic Geometry Homework # 5 Due: Thursday, October 31, 2013 8:30 am

Problem 1. If $V \subset \mathbb{A}^n(k)$ and $W \subset \mathbb{A}^m(k)$ are both irreducible, prove that $V \times W = \{(v,w) \mid v \in V, w \in W\} \subset \mathbb{A}^n(k) \times \mathbb{A}^m(k)$ is irreducible.

Problem 2. Let $V_1 = \mathcal{V}(x_1, x_2)$, $V_2 = \mathcal{V}(x_2, x_3)$, and $V_3 = \mathcal{V}(x_1, x_3)$.

- a. Compute $I(V_1) \cdot I(V_2) \cdot I(V_3)$.
- b. Compute $I(V_1) \cap I(V_2) \cap I(V_3)$.
- c. Show that $I(V_1) \cdot I(V_2) \cdot I(V_3) \subsetneq I(V_1) \cap I(V_2) \cap I(V_3)$.

Problem 3. Suppose that $I = \langle f_1, f_2 \rangle \subset \mathbb{C}[x, y]$ such that f_1 is linear and f_2 is an irreducible quadratic polynomial. If $g \in \sqrt{I}$, show that $g^2 \in I$.