Math 526 - Algebraic Geometry Homework \# 5
 Due: Thursday, October 31, 2013 8:30 am

Problem 1. If $V \subset \mathbb{A}^{n}(k)$ and $W \subset \mathbb{A}^{m}(k)$ are both irreducible, prove that $V \times W=$ $\{(v, w) \mid v \in V, w \in W\} \subset \mathbb{A}^{n}(k) \times \mathbb{A}^{m}(k)$ is irreducible.

Problem 2. Let $V_{1}=\mathcal{V}\left(x_{1}, x_{2}\right), V_{2}=\mathcal{V}\left(x_{2}, x_{3}\right)$, and $V_{3}=\mathcal{V}\left(x_{1}, x_{3}\right)$.
a. Compute $I\left(V_{1}\right) \cdot I\left(V_{2}\right) \cdot I\left(V_{3}\right)$.
b. Compute $I\left(V_{1}\right) \cap I\left(V_{2}\right) \cap I\left(V_{3}\right)$.
c. Show that $I\left(V_{1}\right) \cdot I\left(V_{2}\right) \cdot I\left(V_{3}\right) \subsetneq I\left(V_{1}\right) \cap I\left(V_{2}\right) \cap I\left(V_{3}\right)$.

Problem 3. Suppose that $I=\left\langle f_{1}, f_{2}\right\rangle \subset \mathbb{C}[x, y]$ such that f_{1} is linear and f_{2} is an irreducible quadratic polynomial. If $g \in \sqrt{I}$, show that $g^{2} \in I$.

