Math 526 - Algebraic Geometry Homework \# 3
 Due: Thursday, September 19, 2013 8:30 am

Problem 1. On $k[x, y, z]$, let $>$ be the graded lexicographic ordering defined by $x>y>z$. Apply the division algorithm to $g=x^{2} y^{2}+x^{3}-x^{2} y-x^{2} z-y z+x$ given the following collection of polynomials:
a. $\left\{x^{2} y-z, x y-1\right\}$,
b. $\{x-z, x y-1\}$,
c. $\{x-z, y z-1\}$.

Even though each collection generates the same ideal (which contains g), explain why your remainders are not all zero.

Problem 2. Let $F=\left\{x^{3}-2 x y, x^{2} y-2 y^{2}+x, x^{2}, x y, 2 y^{2}-x\right\} \subset k[x, y]$ and $I=\langle F\rangle$. Consider the standard graded lexicographic ordering $(x>y)$.
a. Use Buchburger's criterion to show that F is a Gröbner basis for I.
b. Compute a minimal generating set of $L T(I)$.
c. Compute the set of standard monomials of I.
d. Compute the normal form of $g=3 x y^{2}+2 x y-4 y^{2}+3 x-y+2$.

Problem 3. For $I=\left\langle x^{2}-y, x^{3}-z\right\rangle \subset k[x, y, z]$, use Buchburger's algorithm to compute a Gröbner basis
a. with respect to the standard lexicographic ordering $(x>y>z)$,
b. with respect to the lexicographic ordering defined by $y>z>x$,
c. with respect to the standard graded lexicographic ordering,
d. with respect to the standard graded reverse lexicographic ordering.

