Math 526 - Algebraic Geometry Homework \# 2
 Due: Tuesday, September 10, 2013 8:30 am

Problem 1. Suppose that $V \subset \mathbb{A}^{n}(k)$ is a variety.
a. Show that $\underbrace{V \times \cdots \times V}_{j \text { times }}=\left\{\left(v_{1}, \ldots, v_{j}\right) \mid v_{i} \in V\right\} \subset \underbrace{\mathbb{A}^{n}(k) \times \cdots \times \mathbb{A}^{n}(k)}_{j \text { times }}$ is a variety.
b. Show that $\Delta_{V}=\{(v, \ldots, v) \mid v \in V\} \subset \underbrace{\mathbb{A}^{n}(k) \times \cdots \times \mathbb{A}^{n}(k)}_{j \text { times }}$ is a variety.

Problem 2. Compute $I\left(\ell_{1} \cup \ell_{2} \cup \ell_{3}\right) \subset \mathbb{R}[x, y, z]$ where

$$
\ell_{1}=\{(t, 0,0) \mid t \in \mathbb{R}\}, \quad \ell_{2}=\{(0, t, 0) \mid t \in \mathbb{R}\}, \text { and } \ell_{3}=\{(0,0, t) \mid t \in \mathbb{R}\}
$$

Problem 3. Show there is a unique monomial order on $\mathbb{C}[x]$.

Problem 4. For the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ and $w \in \mathbb{R}^{n}$, consider the ordering $>_{w}$ defined by $x^{\alpha}>_{w} x^{\beta}$ if and only if $w(\alpha)>w(\beta)$ where

$$
w(\gamma)=w_{1} \gamma_{1}+\cdots+w_{n} \gamma_{n}
$$

a. If $n=2, w_{1}=3$, and $w_{2}=7$, is $>_{w}$ a monomial order?
b. If $n=2, w_{1}=1$, and $w_{2}=\pi$, is $>_{w}$ a monomial order?
c. Develop and prove necessary and sufficient conditions on w such that $>_{w}$ is a monomial order.

