Math 526 – Algebraic Geometry Homework # 2 Due: Tuesday, September 10, 2013 8:30 am

Problem 1. Suppose that $V \subset \mathbb{A}^n(k)$ is a variety.

a. Show that $\underbrace{V \times \cdots \times V}_{j \text{ times}} = \{(v_1, \dots, v_j) \mid v_i \in V\} \subset \underbrace{\mathbb{A}^n(k) \times \cdots \times \mathbb{A}^n(k)}_{j \text{ times}}$ is a variety. b. Show that $\Delta_V = \{(v, \dots, v) \mid v \in V\} \subset \underbrace{\mathbb{A}^n(k) \times \cdots \times \mathbb{A}^n(k)}_{j \text{ times}}$ is a variety.

Problem 2. Compute $I(\ell_1 \cup \ell_2 \cup \ell_3) \subset \mathbb{R}[x, y, z]$ where

 $\ell_1 = \{(t,0,0) \mid t \in \mathbb{R}\}, \ \ell_2 = \{(0,t,0) \mid t \in \mathbb{R}\}, \ and \ \ell_3 = \{(0,0,t) \mid t \in \mathbb{R}\}.$

Problem 3. Show there is a unique monomial order on $\mathbb{C}[x]$.

Problem 4. For the polynomial ring $k[x_1, \ldots, x_n]$ and $w \in \mathbb{R}^n$, consider the ordering $>_w$ defined by $x^{\alpha} >_w x^{\beta}$ if and only if $w(\alpha) > w(\beta)$ where

$$w(\gamma) = w_1 \gamma_1 + \dots + w_n \gamma_n.$$

- a. If n = 2, $w_1 = 3$, and $w_2 = 7$, is $>_w$ a monomial order?
- b. If n = 2, $w_1 = 1$, and $w_2 = \pi$, is $>_w$ a monomial order?
- c. Develop and prove necessary and sufficient conditions on w such that $>_w$ is a monomial order.