Math 526 - Algebraic Geometry Homework \# 1
 Due: Thursday, August 29, 2013 8:30 am

This homework is a review of some concepts from abstract and linear algebra.
Problem 1. Write the following polynomials as a product of irreducible polynomials in
a. $\mathbb{Q}[x]$;
b. $\mathbb{R}[x]$;
c. $\mathbb{C}[x]$.

- $g(x)=x^{8}-1$.
- $f(x)=x^{3}+x-10$.
- $h(x)=x^{3}-x^{2}-2 x+2$.

Problem 2. Construct a parameterization of the line in \mathbb{C}^{3} defined by the equations

$$
\begin{aligned}
3 x+5 y-2 z & =1 \\
x-3 y+6 z & =-2
\end{aligned}
$$

Problem 3. Consider the following parameterically defined curves in \mathbb{R}^{2} :

- $x(t)=t^{5}-4 t^{3}, y(t)=t^{2} ;$
- $x(t)=\sin t, y(t)=\cos t ;$
- $x(t)=t-2 \sin t, y(t)=1-2 \cos t$;
- $x(t)=\frac{1-t^{2}}{1+t^{2}}, y(t)=\frac{2 t}{1+t^{2}}$.
a. Sketch each curve in \mathbb{R}^{2}.
b. For each curve, if possible, find a polynomial $g \in \mathbb{R}[x, y]$ such that $g(x(t), y(t)) \equiv 0$. If this is not possible, give a brief explanation why.

