Math 526 – Algebraic Geometry Homework # 1 Due: Thursday, August 29, 2013 8:30 am

This homework is a review of some concepts from abstract and linear algebra.

Problem 1. Write the following polynomials as a product of irreducible polynomials in

a. $\mathbb{Q}[x];$ b. $\mathbb{R}[x];$ c. $\mathbb{C}[x].$ • $g(x) = x^8 - 1.$ • $f(x) = x^3 + x - 10.$ • $h(x) = x^3 - x^2 - 2x + 2.$

Problem 2. Construct a parameterization of the line in \mathbb{C}^3 defined by the equations

$$\begin{array}{rcl} 3x + 5y - 2z &=& 1 \\ x - 3y + 6z &=& -2 \end{array}$$

Problem 3. Consider the following parameterically defined curves in \mathbb{R}^2 :

- $x(t) = t^5 4t^3$, $y(t) = t^2$;
- $x(t) = \sin t, \ y(t) = \cos t;$
- $x(t) = t 2\sin t, \ y(t) = 1 2\cos t;$
- $x(t) = \frac{1-t^2}{1+t^2}, \ y(t) = \frac{2t}{1+t^2}.$
- a. Sketch each curve in \mathbb{R}^2 .
- b. For each curve, if possible, find a polynomial $g \in \mathbb{R}[x, y]$ such that $g(x(t), y(t)) \equiv 0$. If this is not possible, give a brief explanation why.