1. The second derivative test

In one variable calculus, the mean value theorem relates the first derivative of a function to the nearby values of the function. The analogue for second (and higher order) derivatives is known as 'Taylor's Theorem (with remainder)'. Here I state it only for second order derivatives.

Theorem 1.1 (Second order Taylor's Theorem with remainder). Let $I \subset \mathbf{R}$ be an open interval and f : $I \rightarrow \mathbf{R}$ be twice differentiable. Then for any $a, t \in I$, there exists a number c between a and t such that

$$
f(t)=f(a)+f^{\prime}(a)(t-a)+\frac{1}{2} f^{\prime \prime}(c)(t-a)^{2}
$$

This theorem generalizes to scalar-valued functions of more than one variable as follows.
Corollary 1.2. Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is twice differentiable on an open ball $B(\mathbf{a}, r) \subset \mathbf{R}^{n}$. Then for any displacement $\mathbf{h} \in \mathbf{R}^{n}$ with magnitude $\|\mathbf{h}\|<r$, there exists $c \in(0,1)$ such that

$$
f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}+c \mathbf{h}) \mathbf{h} .
$$

Proof. Let $\gamma(t)=\mathbf{a}+t \mathbf{h}$ parametrize the line through \mathbf{a} in direction \mathbf{h} and $g: \mathbf{R} \rightarrow \mathbf{R}$ be the composite function

$$
g(t):=f \circ \gamma(t)=f(\mathbf{a}+t \mathbf{h})
$$

Then $g(t)$ is defined for all t in an open interval containing $t=0$ and $t=1$. Moreover, the Chain rule tells us that g is twice differentiable on this interval and allows us to compute the derivatives of g in terms of derivatives of f :

$$
g^{\prime}(t)=D f(\gamma(t)) \gamma^{\prime}(t)=\nabla f(\mathbf{a}+t \mathbf{h}) \cdot \mathbf{h}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\mathbf{a}+t \mathbf{h}) h_{j}
$$

and

$$
g^{\prime \prime}(t)=\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}(\mathbf{a}+t \mathbf{h}) h_{k} h_{j}=\mathbf{h}^{T} H f(\mathbf{a}+t \mathbf{h}) \mathbf{h} .
$$

Applying Taylor's Theorem (above) to g with $a=0$ and $x=1$, I obtain $c \in(0,1)$ such that

$$
g(1)=g(0)+g^{\prime}(0)+\frac{1}{2} g^{\prime \prime}(c)
$$

In light of our computations above, this can be rewritten in terms of f as

$$
f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}+c \mathbf{h}) \mathbf{h}
$$

which is what I wanted to show.

By itself Corollary 1.2 is not very useful, because we don't know much about the number c, or more
 a (i.e. that all entries of $H f$ are continuous at \mathbf{a}), then it follows from Proposition 1.10 in my notes about limits that

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} H f(\mathbf{x})=H f(\mathbf{a})
$$

Here I am thinking of $H f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n^{2}}$ as a vector-valued function with one component for each second order partial derivative $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}$ of f. Hence I can restate Corollary 1.2 in the following less precise but ultimately more useful fashion.

Theorem 1.3. Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is C^{2} at \mathbf{a}. Then

$$
f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}) \mathbf{h}+E_{2}(\mathbf{h})
$$

where $\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{E_{2}(\mathbf{h})}{\|\mathbf{h}\|^{2}}=\mathbf{0}$.

Proof. Given $\mathbf{a} \in \mathbf{R}^{n}$, choose $r>0$ such that $f(\mathbf{x})$ is defined for all $\mathbf{x} \in B(\mathbf{a}, r)$. Then for any \mathbf{h} with magnitude $\|\mathbf{h}\|<r$, Corollary 1.2 tells me that

$$
E_{2}(\mathbf{h})=\frac{1}{2}\left(\mathbf{h}^{T} H f(\mathbf{a}) \mathbf{h}-\mathbf{h}^{T} H f(\mathbf{a}+c \mathbf{h}) \mathbf{h}\right)=\frac{1}{2} \mathbf{h}^{T}(H f(\mathbf{a}) \mathbf{h}-H f(\mathbf{a}+c \mathbf{h})) \mathbf{h}
$$

for some $c \in(0,1)$. By continuity of $H f$ at \mathbf{a}, this expression tends to 0 as $\mathbf{h} \rightarrow \mathbf{0}$. I must show that it does so faster than $\|\mathbf{h}\|^{2}$, and for this I resort to the definition of limit.

Let $\epsilon>0$ be given. Since f is C^{2} at a there exists $\delta>0$ such that $\|\mathbf{h}\|<\delta$ implies that

$$
\|H f(\mathbf{a}+\mathbf{h})-H f(\mathbf{a})\|<2 \epsilon
$$

Note that if $\|\mathbf{h}\|<\delta$, then for any $c \in(0,1)$, I have $\|c \mathbf{h}\|<\delta$, too. Hence $0<\|\mathbf{h}\|<\delta$ implies that

$$
\frac{\left|E_{2}(\mathbf{h})\right|}{\|\mathbf{h}\|^{2}}=\frac{\left|\frac{1}{2} \mathbf{h}^{T}(H f(\mathbf{a}+c \mathbf{h})-H f(\mathbf{a})) \mathbf{h}\right|}{\|\mathbf{h}\|^{2}} \leq \frac{1}{2}\|H f(\mathbf{a}+c \mathbf{h})-H f(\mathbf{a})\|<\epsilon
$$

The ' \leq ' comes from the Cauchy-Schwarz inequality for matrices. This proves that $\frac{\left|E_{2}(\mathbf{h})\right|}{\|\mathbf{h}\|^{2}} \rightarrow 0$ as $\mathbf{h} \rightarrow \mathbf{0}$.
In order to pass from this theorem to the second derivative test, I must introduce a bit of terminology associated to symmetric matrices. The quadratic form associated to a symmetric $n \times n$ matrix A is the function $Q: \mathbf{R}^{n} \rightarrow \mathbf{R}$ given by

$$
Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}
$$

Note that $Q(c \mathbf{x})=c^{2} Q(\mathbf{x})$ for any scalar $c \in \mathbf{R}$.
Definition 1.4. Let $A \in \mathcal{M}_{n \times n}$ be a symmetric square matrix and $Q: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be the associated quadratic form. We say that

- A is positive definite if $Q(\mathbf{x})>0$ for all non-zero $\mathbf{x} \in \mathbf{R}^{n}$;
- A is negative definite if $Q(\mathbf{x})<0$ for all non-zero $\mathbf{x} \in \mathbf{R}^{n}$;
- A is indefinite if there exist $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ such that $Q(\mathbf{x})<0<Q(\mathbf{y})$.

A symmetric matrix can satisfy at most one of these three conditions, but it's hard to tell just by looking which, if any, holds for a given matrix. For 2×2 matrices, there is a fairly convenient condition one can apply.
Theorem 1.5. $A 2 \times 2$ symmetric matrix $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ is

- positive definite if and only if $a>0$ and $a c>b^{2}$;
- negative definite if and only if $a<0$ and $a c>b^{2}$;
- indefinite if and only if $a c<b^{2}$.

Proof. See Shifrin.
For larger matrices, there is another criterion one can use, but it depends on the notion of an 'eigenvalue'. Though I do not do so here, it can be proved using the method of Lagrange multipliers.

Theorem 1.6. An $n \times n$ symmetric matrix A is

- positive definite if and only if all (real) eigenvalues of A are positive;
- negative definite if and only if all (real) eigenvalues of A are negative;
- indefinite if and only if A has both positive and negative eigenvalues.

Jones gives another useful criterion for definiteness (see 'The Definiteness Test' in Jones chapter 4E) that I do not record here. Instead, I move on to

Theorem 1.7 (Second derivative test). Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is C^{2} at some critical point $\mathbf{a} \in \mathbf{R}^{n}$ for f. Then f has

- a local minimum at \mathbf{a} if $H f(\mathbf{a})$ is positive definite;
- a local maximum at \mathbf{a} if $H f(\mathbf{a})$ is negative definite;
- neither a local maximum nor a local minimum if $H f(\mathbf{a})$ is indefinite.

Proof. Let $Q(\mathbf{h})=\mathbf{h}^{T} H f(\mathbf{a}) \mathbf{h}$ be the quadratic form associated to the symmetric matrix $H f(\mathbf{a})$. Since Q is continuous, and since the unit sphere $\left\{\mathbf{h} \in \mathbf{R}^{n}:\|\mathbf{h}\|=1\right\}$ is a compact subset of \mathbf{R}^{n}, the Extreme Value Theorem gives me unit vectors $\mathbf{h}_{\max }, \mathbf{h}_{\min }$ such that

$$
\begin{equation*}
Q\left(\mathbf{h}_{\max }\right) \geq Q(\mathbf{h}) \geq Q\left(\mathbf{h}_{\min }\right) \tag{1}
\end{equation*}
$$

for all unit vectors $\mathbf{h} \in \mathbf{R}^{n}$. As I noted above, $Q(c \mathbf{h})=c^{2} Q(\mathbf{h})$, so I can extend this inequality to any vector $\mathbf{h} \in \mathbf{R}^{n}$, regardless of length:

$$
\|\mathbf{h}\|^{2} Q\left(\mathbf{h}_{\max }\right) \geq Q(\mathbf{h}) \geq\|\mathbf{h}\|^{2} Q\left(\mathbf{h}_{\min }\right)
$$

In particular, Q is positive definite if and only if $Q\left(\mathbf{h}_{\min }\right)>0$, negative definite if and only if $Q\left(\mathbf{h}_{\max }\right)<0$ and indefinite if and only if $Q\left(\mathbf{h}_{\min }\right)<0<Q\left(\mathbf{h}_{\max }\right)$.

Suppose now that $\operatorname{Hf(a)}$ is positive definite. Since a is a critical point of f, Theorem 1.3 tells me that for any small displacement \mathbf{h},

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=Q(\mathbf{h})+E_{2}(\mathbf{h}) \geq Q\left(\mathbf{h}_{\text {min }}\right)\|\mathbf{h}\|^{2}+E_{2}(\mathbf{h})=\|\mathbf{h}\|^{2}\left(Q\left(\mathbf{h}_{\text {min }}\right)+\frac{E_{2}(\mathbf{h})}{\|\mathbf{h}\|^{2}}\right)
$$

Since $\operatorname{Hf}(\mathbf{a})$ is positive definite, I know that $\frac{1}{3} Q\left(\mathbf{h}_{\text {min }}\right)>0$. So Theorem 1.3 tells me further that there exists $\delta>0$ such that $\|\mathbf{h}\|<\delta$ implies that $\frac{E_{2}(\mathbf{h})}{\|\mathbf{h}\|^{2}}<\frac{1}{3} Q\left(\mathbf{h}_{\text {min }}\right)$. Hence $\|\mathbf{h}\|<\delta$ implies that

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a}) \geq \frac{2}{3}\|\mathbf{h}\|^{2} Q\left(\mathbf{h}_{\min }\right)>0
$$

That is, f has a local minimum at a. The case where $\operatorname{Hf}(\mathbf{a})$ is negative definite is proved in the same fashion.

It remains to deal with the case where $\operatorname{Hf(a)}$ is indefinite. This time I take $\mathbf{h}=t \mathbf{h}_{\text {max }}$, and obtain that

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=Q(\mathbf{h})+E_{2}(\mathbf{h})=t^{2}\left(Q\left(\mathbf{h}_{\max }\right)+\frac{E_{2}\left(t \mathbf{h}_{\max }\right)}{t^{2}}\right)
$$

Since $\operatorname{Hf}(\mathbf{a})$ is indefinite, $Q\left(\mathbf{h}_{\max }\right)$ is positive, and I obtain $\delta_{1}>0$ such that $\|\mathbf{h}\|<\delta$ implies that $\left|\frac{E_{2}(\mathbf{h})}{\|\mathbf{h}\|^{2}}\right|<$ $\frac{1}{3} Q\left(\mathbf{h}_{\max }\right)$. This holds in particular, if $\mathbf{h}=t \mathbf{h}_{\max }$ for any $|t|<\delta_{1}$. So $|t|<\delta_{1}$ implies that

$$
f\left(\mathbf{a}+t \mathbf{h}_{\max }\right)-f(\mathbf{a})>\frac{2}{3} t^{2} Q\left(\mathbf{h}_{\max }\right)>0
$$

A similar argument shows that there exists δ_{2} such that $|t|<\delta_{2}$

$$
f\left(\mathbf{a}+t \mathbf{h}_{\max }\right)-f(\mathbf{a})<\frac{2}{3} t^{2} Q\left(\mathbf{h}_{\min }\right)<0
$$

So for any $\delta>0$ I may set $t=\frac{1}{2} \min \left\{\delta, \delta_{1}, \delta_{2}\right\}$ and obtain displacements $t \mathbf{h}_{\min }, t \mathbf{h}_{\max } \in B(0, \delta)$ such that

$$
f\left(\mathbf{a}+t \mathbf{h}_{\min }\right)-f(\mathbf{a})<0<f\left(\mathbf{a}+t \mathbf{h}_{\max }\right)-f(\mathbf{a}) .
$$

That is, f does not have a local maximum or a local minimum at a.

