1. THE SECOND DERIVATIVE TEST

In one variable calculus, the mean value theorem relates the first derivative of a function to the nearby
values of the function. The analogue for second (and higher order) derivatives is known as ‘Taylor’s Theorem
(with remainder)’. Here I state it only for second order derivatives.

Theorem 1.1 (Second order Taylor’s Theorem with remainder). Let I C R be an open interval and f :
I — R be twice differentiable. Then for any a,t € I, there exists a number ¢ between a and t such that

1
F(t) = fa) + f'(a)(t = a) + 5 f"()(t — a)*
This theorem generalizes to scalar-valued functions of more than one variable as follows.

Corollary 1.2. Suppose that f : R™ — R is twice differentiable on an open ball B(a,r) C R™. Then for
any displacement h € R™ with magnitude |h| < r, there exists ¢ € (0,1) such that

f(a+h)=f(a)+Vf(a)-h+ %hTHf(a + ch)h.

Proof. Let «(t) = a + th parametrize the line through a in direction h and g : R — R be the composite
function

g(t) := f on(t) = f(a+th).
Then g(t) is defined for all ¢ in an open interval containing ¢t = 0 and ¢ = 1. Moreover, the Chain rule tells

us that ¢ is twice differentiable on this interval and allows us to compute the derivatives of g in terms of
derivatives of f:

§(t) = DF W) (1) = Vf(a+th) b= Z L (a+ thyhy,

and

(a+th)hih; = hT Hf(a + th)h.
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0 g with a =0 and = = 1, I obtain ¢ € (0,1) such that

-+

Applying Taylor’s Theorem (above)

9(1) = 9(0) + ¢'(0) + 3"(0).

In light of our computations above, this can be rewritten in terms of f as
1
f(a+h)=f(a)+Vf(a)-h+ 5hTHf(a + ch)h,

which is what I wanted to show. ([

By itself Corollary 1.2 is not very useful, because we don’t know much about the number ¢, or more
specifically, about the relationship between H f(a + ch) and H f(a). However, if we assume that f is C? at
a (i.e. that all entries of Hf are continuous at a), then it follows from Proposition 1.10 in my notes about
limits that

lim Hf(x) = H(a).

Here I am thinking of Hf : R"™ — R™ as a vector-valued function with one component for each second order
2

partial derivative % of f. Hence I can restate Corollary 1.2 in the following less precise but ultimately
J

more useful fashion.

Theorem 1.3. Suppose that f : R® = R is C? at a. Then
1
fla+h)=f(a)+Vf(a)-h+ §hTJLIf(a)h + Es(h),

where limy_,0 ”;—(”2) =0.



Proof. Given a € R™, choose r > 0 such that f(x) is defined for all x € B(a,r). Then for any h with
magnitude ||h|| <7, Corollary 1.2 tells me that

Fs(h) = %(hTHf(a)h ~hTHf(a+ch)h) = %hT(Hf(a)h — Hf(a+ ch))h

for some ¢ € (0,1). By continuity of H f at a, this expression tends to 0 as h — 0. T must show that it does
so faster than ||h||, and for this I resort to the definition of limit.
Let € > 0 be given. Since f is C? at a there exists § > 0 such that ||h| < & implies that
|Hf(a+h)— Hf(a)| < 2e.
Note that if ||h|| < d, then for any ¢ € (0, 1), I have ||ch|| < §, too. Hence 0 < ||h|| < ¢ implies that

B2 (b)) _ [zh"(Hf(a +ch) — Hf(a))h] <1 H ch) - H €
DR I < 3 I (at ch) ~ Hf(@)] <«

|E2 (h)]

Thl? —0ash—0.0

The ‘<’ comes from the Cauchy-Schwarz inequality for matrices. This proves that

In order to pass from this theorem to the second derivative test, I must introduce a bit of terminology
associated to symmetric matrices. The quadratic form associated to a symmetric n X n matrix A is the
function @ : R™ — R given by

Q(x) = xT Ax.
Note that Q(cx) = c*Q(x) for any scalar ¢ € R.

Definition 1.4. Let A € M, «,, be a symmetric square matriz and @Q : R™ — R be the associated quadratic
form. We say that

e A is positive definite if Q(x) > 0 for all non-zero x € R"™;

e A is negative definite if Q(x) < 0 for all non-zero x € R™;

e A is indefinite if there exist x,y € R™ such that Q(x) < 0 < Q(y).

A symmetric matrix can satisfy at most one of these three conditions, but it’s hard to tell just by looking
which, if any, holds for a given matrix. For 2 x 2 matrices, there is a fairly convenient condition one can

apply.

Theorem 1.5. A 2 x 2 symmetric matric A = {Z ﬂ 1

e positive definite if and only if a > 0 and ac > b%;
e negative definite if and only if a < 0 and ac > b?;
e indefinite if and only if ac < bZ.

Proof. See Shifrin. O

For larger matrices, there is another criterion one can use, but it depends on the notion of an ‘eigenvalue’.
Though I do not do so here, it can be proved using the method of Lagrange multipliers.

Theorem 1.6. An n x n symmetric matrix A is
e positive definite if and only if all (real) eigenvalues of A are positive;
o negative definite if and only if all (real) eigenvalues of A are negative;
e indefinite if and only if A has both positive and negative eigenvalues.

Jones gives another useful criterion for definiteness (see ‘The Definiteness Test’ in Jones chapter 4E) that
I do not record here. Instead, I move on to

Theorem 1.7 (Second derivative test). Suppose that f : R™ — R is C? at some critical point a € R™ for
f. Then f has

e a local minimum at a if H f(a) is positive definite;

e a local mazimum at a if H f(a) is negative definite;

e neither a local mazimum nor a local minimum if H f(a) is indefinite.
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Proof. Let Q(h) = hT Hf(a)h be the quadratic form associated to the symmetric matrix H f(a). Since Q

is continuous, and since the unit sphere {h € R™ : ||h|| = 1} is a compact subset of R™, the Extreme Value
Theorem gives me unit vectors hy, 4., hpin such that
(1) Q(hmaz) Z Q(h) 2 Q(hmin)

for all unit vectors h € R™. As I noted above, Q(ch) = c¢2Q(h), so I can extend this inequality to any vector
h € R", regardless of length:
IB]J* Q(Bmaz) > Q(h) > [[h]|* Q(Bymin)-
In particular, @ is positive definite if and only if Q(h,,;,) > 0, negative definite if and only if Q(hy,e.) < 0
and indefinite if and only if Q(hym) <0 < Q(hyaz)-
Suppose now that H f(a) is positive definite. Since a is a critical point of f, Theorem 1.3 tells me that
for any small displacement h,

fla+h) — f(a) = Q(h) + Ex(h) > Q) [l + Ea(h) = [ (Q(hmm> n ’fﬁfﬁ?) .

Since H f(a) is positive definite, I know that $Q(hm,) > 0. So Theorem 1.3 tells me further that there

exists 0 > 0 such that ||h|| < § implies that ]\EI;(H};) < $Q(hyn). Hence ||h|| < & implies that

flatb) = f(a) > 2 ) Qiain) > 0.

That is, f has a local minimum at a. The case where H f(a) is negative definite is proved in the same
fashion.
It remains to deal with the case where H f(a) is indefinite. This time I take h = th,,,,, and obtain that

E thmaw
Flact ) = @) = Q) + Eafh) = Qi) + 2252 ).
Since H f(a) is indefinite, Q(hy,q.) is positive, and T obtain §; > 0 such that ||h|| < ¢ implies that H‘;—(H}Q) <

%Q(hmam). This holds in particular, if h = th,,,, for any |t| < d;. So [¢t| < §; implies that

fla+thy,e) — f(a) > thQ(hmax) > 0.

A similar argument shows that there exists o such that |t| < d2

2
fla+thy..)— f(a) < gtzQ(hmm) < 0.
So for any 6 > 0 I may set t = %min{d, 91,02} and obtain displacements thy,ip, thyae. € B(0,0) such that
fla+thpyn) — f(a) <0< f(a+thpe) — f(a).

That is, f does not have a local maximum or a local minimum at a. O



