
1. The second derivative test

In one variable calculus, the mean value theorem relates the first derivative of a function to the nearby
values of the function. The analogue for second (and higher order) derivatives is known as ‘Taylor’s Theorem
(with remainder)’. Here I state it only for second order derivatives.

Theorem 1.1 (Second order Taylor’s Theorem with remainder). Let I ⊂ R be an open interval and f :
I → R be twice differentiable. Then for any a, t ∈ I, there exists a number c between a and t such that

f(t) = f(a) + f ′(a)(t− a) +
1

2
f ′′(c)(t− a)2

This theorem generalizes to scalar-valued functions of more than one variable as follows.

Corollary 1.2. Suppose that f : Rn → R is twice differentiable on an open ball B(a, r) ⊂ Rn. Then for
any displacement h ∈ Rn with magnitude ‖h‖ < r, there exists c ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a) · h +
1

2
hTHf(a + ch)h.

Proof. Let γ(t) = a + th parametrize the line through a in direction h and g : R → R be the composite
function

g(t) := f ◦ γ(t) = f(a + th).

Then g(t) is defined for all t in an open interval containing t = 0 and t = 1. Moreover, the Chain rule tells
us that g is twice differentiable on this interval and allows us to compute the derivatives of g in terms of
derivatives of f :

g′(t) = Df(γ(t))γ′(t) = ∇f(a + th) · h =

n∑
j=1

∂f

∂xj
(a + th)hj ,

and

g′′(t) =

n∑
j=1

n∑
k=1

∂2f

∂xk ∂xj
(a + th)hkhj = hT Hf(a + th) h.

Applying Taylor’s Theorem (above) to g with a = 0 and x = 1, I obtain c ∈ (0, 1) such that

g(1) = g(0) + g′(0) +
1

2
g′′(c).

In light of our computations above, this can be rewritten in terms of f as

f(a + h) = f(a) +∇f(a) · h +
1

2
hTHf(a + ch)h,

which is what I wanted to show. �

By itself Corollary 1.2 is not very useful, because we don’t know much about the number c, or more
specifically, about the relationship between Hf(a + ch) and Hf(a). However, if we assume that f is C2 at
a (i.e. that all entries of Hf are continuous at a), then it follows from Proposition 1.10 in my notes about
limits that

lim
x→a

Hf(x) = Hf(a).

Here I am thinking of Hf : Rn → Rn2

as a vector-valued function with one component for each second order

partial derivative ∂2f
∂xj ∂xk

of f . Hence I can restate Corollary 1.2 in the following less precise but ultimately

more useful fashion.

Theorem 1.3. Suppose that f : Rn → R is C2 at a. Then

f(a + h) = f(a) +∇f(a) · h +
1

2
hTHf(a)h + E2(h),

where limh→0
E2(h)

‖h‖2 = 0.
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Proof. Given a ∈ Rn, choose r > 0 such that f(x) is defined for all x ∈ B(a, r). Then for any h with
magnitude ‖h‖ < r, Corollary 1.2 tells me that

E2(h) =
1

2
(hTHf(a)h− hTHf(a + ch)h) =

1

2
hT (Hf(a)h−Hf(a + ch))h

for some c ∈ (0, 1). By continuity of Hf at a, this expression tends to 0 as h→ 0. I must show that it does

so faster than ‖h‖2, and for this I resort to the definition of limit.
Let ε > 0 be given. Since f is C2 at a there exists δ > 0 such that ‖h‖ < δ implies that

‖Hf(a + h)−Hf(a)‖ < 2ε.

Note that if ‖h‖ < δ, then for any c ∈ (0, 1), I have ‖ch‖ < δ, too. Hence 0 < ‖h‖ < δ implies that

|E2(h)|
‖h‖2

=
| 12hT (Hf(a + ch)−Hf(a))h|

‖h‖2
≤ 1

2
‖Hf(a + ch)−Hf(a)‖ < ε.

The ‘≤’ comes from the Cauchy-Schwarz inequality for matrices. This proves that |E2(h)|
‖h‖2 → 0 as h→ 0. �

In order to pass from this theorem to the second derivative test, I must introduce a bit of terminology
associated to symmetric matrices. The quadratic form associated to a symmetric n × n matrix A is the
function Q : Rn → R given by

Q(x) = xTAx.

Note that Q(cx) = c2Q(x) for any scalar c ∈ R.

Definition 1.4. Let A ∈Mn×n be a symmetric square matrix and Q : Rn → R be the associated quadratic
form. We say that

• A is positive definite if Q(x) > 0 for all non-zero x ∈ Rn;
• A is negative definite if Q(x) < 0 for all non-zero x ∈ Rn;
• A is indefinite if there exist x,y ∈ Rn such that Q(x) < 0 < Q(y).

A symmetric matrix can satisfy at most one of these three conditions, but it’s hard to tell just by looking
which, if any, holds for a given matrix. For 2 × 2 matrices, there is a fairly convenient condition one can
apply.

Theorem 1.5. A 2× 2 symmetric matrix A =

[
a b
b c

]
is

• positive definite if and only if a > 0 and ac > b2;
• negative definite if and only if a < 0 and ac > b2;
• indefinite if and only if ac < b2.

Proof. See Shifrin. �

For larger matrices, there is another criterion one can use, but it depends on the notion of an ‘eigenvalue’.
Though I do not do so here, it can be proved using the method of Lagrange multipliers.

Theorem 1.6. An n× n symmetric matrix A is

• positive definite if and only if all (real) eigenvalues of A are positive;
• negative definite if and only if all (real) eigenvalues of A are negative;
• indefinite if and only if A has both positive and negative eigenvalues.

Jones gives another useful criterion for definiteness (see ‘The Definiteness Test’ in Jones chapter 4E) that
I do not record here. Instead, I move on to

Theorem 1.7 (Second derivative test). Suppose that f : Rn → R is C2 at some critical point a ∈ Rn for
f . Then f has

• a local minimum at a if Hf(a) is positive definite;
• a local maximum at a if Hf(a) is negative definite;
• neither a local maximum nor a local minimum if Hf(a) is indefinite.
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Proof. Let Q(h) = hTHf(a)h be the quadratic form associated to the symmetric matrix Hf(a). Since Q
is continuous, and since the unit sphere {h ∈ Rn : ‖h‖ = 1} is a compact subset of Rn, the Extreme Value
Theorem gives me unit vectors hmax,hmin such that

(1) Q(hmax) ≥ Q(h) ≥ Q(hmin)

for all unit vectors h ∈ Rn. As I noted above, Q(ch) = c2Q(h), so I can extend this inequality to any vector
h ∈ Rn, regardless of length:

‖h‖2Q(hmax) ≥ Q(h) ≥ ‖h‖2Q(hmin).

In particular, Q is positive definite if and only if Q(hmin) > 0, negative definite if and only if Q(hmax) < 0
and indefinite if and only if Q(hmin) < 0 < Q(hmax).

Suppose now that Hf(a) is positive definite. Since a is a critical point of f , Theorem 1.3 tells me that
for any small displacement h,

f(a + h)− f(a) = Q(h) + E2(h) ≥ Q(hmin) ‖h‖2 + E2(h) = ‖h‖2
(
Q(hmin) +

E2(h)

‖h‖2

)
.

Since Hf(a) is positive definite, I know that 1
3Q(hmin) > 0. So Theorem 1.3 tells me further that there

exists δ > 0 such that ‖h‖ < δ implies that E2(h)

‖h‖2 < 1
3Q(hmin). Hence ‖h‖ < δ implies that

f(a + h)− f(a) ≥ 2

3
‖h‖2Q(hmin) > 0.

That is, f has a local minimum at a. The case where Hf(a) is negative definite is proved in the same
fashion.

It remains to deal with the case where Hf(a) is indefinite. This time I take h = thmax, and obtain that

f(a + h)− f(a) = Q(h) + E2(h) = t2
(
Q(hmax) +

E2(thmax)

t2

)
.

Since Hf(a) is indefinite, Q(hmax) is positive, and I obtain δ1 > 0 such that ‖h‖ < δ implies that
∣∣∣E2(h)

‖h‖2

∣∣∣ <
1
3Q(hmax). This holds in particular, if h = thmax for any |t| < δ1. So |t| < δ1 implies that

f(a + thmax)− f(a) >
2

3
t2Q(hmax) > 0.

A similar argument shows that there exists δ2 such that |t| < δ2

f(a + thmax)− f(a) <
2

3
t2Q(hmin) < 0.

So for any δ > 0 I may set t = 1
2 min{δ, δ1, δ2} and obtain displacements thmin, thmax ∈ B(0, δ) such that

f(a + thmin)− f(a) < 0 < f(a + thmax)− f(a).

That is, f does not have a local maximum or a local minimum at a. �
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