1. Limits and Continuity

It is often the case that a non-linear function of n-variables $x=\left(x_{1}, \ldots, x_{n}\right)$ is not really defined on all of \mathbf{R}^{n}. For instance $f\left(x_{1}, x_{2}\right)=\frac{x_{1} x_{2}}{x_{1}^{2}-x_{2}^{2}}$ is not defined when $x_{1}= \pm x_{2}$. However, I will adopt a convention from the vector calculus notes of Jones and write $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ regardless, meaning only that the source of F is some subset of \mathbf{R}^{n}. While a bit imprecise, this will not cause any big problems and will simplify many statements.

I will often distinguish between functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ that are scalar-valued and functions $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, m \geq 2$ that are vector-valued, using lower-case letters to denote the former and upper case letters to denote the latter. Note that any vector-valued function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ may be written $F=\left(F_{1}, \ldots, F_{m}\right)$ where $F_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are scalar-valued functions called the components of F. For example, $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $F\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}, x_{1}+x_{2}\right)$ is a vector valued function with components $F_{1}\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ and $F_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$.

Definition 1.1. Let $\mathbf{a} \in \mathbf{R}^{n}$ be a point and $r>0$ be a positive real number. The open ball of radius r about \mathbf{a} is the set

$$
B(\mathbf{a}, r):=\left\{\mathbf{x} \in \mathbf{R}^{n}:\|\mathbf{x}-\mathbf{a}\|<r\right\} .
$$

I will also use $B^{*}(\mathbf{a}, r)$ to denote the set of all $\mathbf{x} \in B(\mathbf{a}, r)$ except $\mathbf{x}=\mathbf{a}$.
Proposition 1.2. Let $\mathbf{a}, \mathbf{b} \in \mathbf{R}^{n}$ be points and $r, s>0$ be real numbers. Then

- $B(\mathbf{a}, r) \subset B(\mathbf{b}, s)$ if and only if $\|\mathbf{a}-\mathbf{b}\| \leq s-r$.
- $B(\mathbf{a}, r) \cap B(\mathbf{b}, s)=\emptyset$ if and only if $\|\mathbf{a}-\mathbf{b}\| \geq s+r$.

Proof. Exercise. Both parts depend on the triangle inequality.

Extending my above convention, I will say that a function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is defined near a point $\mathbf{a} \in \mathbf{R}^{n}$ if there exists $r>0$ such that $F(\mathbf{x})$ is defined for all points $\mathbf{x} \in B(\mathbf{a}, r)$, except possibly the center $\mathbf{x}=\mathbf{a}$.

Below I will need the following inequality relating the magnitude of a vector to the sizes of its coordinates.
Proposition 1.3. For any vector $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbf{R}^{n}$ we have for each $1 \leq j \leq n$ that

$$
\left|v_{j}\right| \leq\|\mathbf{v}\| \leq \sqrt{n} \max _{1 \leq j \leq n}\left|v_{j}\right| .
$$

Proof. Suppose that v_{J} is the coordinate of \mathbf{v} with largest absolute value. Then for any index j, we have

$$
v_{j}^{2} \leq \sum_{i=1}^{n} v_{i}^{2} \leq n v_{J}^{2}
$$

Taking square roots throughout gives the inequalities in the statement of the lemma.
Now we come to the main point. The idea of a 'limit' is one of the most important in all of mathematics. In differential calculus, it is the key to relating non-linear (i.e. hard) functions to linear (i.e. easier) functions.

Definition 1.4. Suppose that $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a function defined near a point $\mathbf{a} \in \mathbf{R}^{n}$. We say that $F(\mathbf{x})$ has limit $\mathbf{b} \in \mathbf{R}^{m}$ as \mathbf{x} approaches \mathbf{a}, i.e.

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b} \in \mathbf{R}^{m}
$$

if for each $\epsilon>0$ there exists $\delta>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ implies $\|F(\mathbf{x})-\mathbf{b}\|<\epsilon$.
Notice that the final phrase in this definition can be written in terms of balls instead of magnitudes: for any $\epsilon>0$ there exists $\delta>0$ such that $\mathbf{x} \in B^{*}(\mathbf{a}, \delta)$ implies $F(\mathbf{x}) \in B(\mathbf{b}, \epsilon)$.

A function might or might not have a limit as \mathbf{x} approaches some given point \mathbf{a}, but it never has more than one.

Proposition 1.5 (uniqueness of limits). If $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is defined near $\mathbf{a} \in \mathbf{R}^{n}$, then there is at most one point $\mathbf{b} \in \mathbf{R}^{m}$ such that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$.

Proof. Suppose, in order to reach a contradiction, that $F(\mathbf{x})$ converges to two different points $\mathbf{b}, \tilde{\mathbf{b}} \in \mathbf{R}^{m}$ as \mathbf{x} approaches \mathbf{a}. Then the quantity $\epsilon:=\frac{1}{2}\|\tilde{\mathbf{b}}-\mathbf{b}\|$ is positive. So by the definition of limit, there exists a number $\delta_{1}>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta_{1}$ implies $\|F(\mathbf{x})-\mathbf{b}\|<\epsilon$. Likewise, there exists a number $\delta_{2}>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta_{2}$ implies $\|F(\mathbf{x})-\tilde{\mathbf{b}}\|<\epsilon$. So if I let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ be the smaller bound, then $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ implies that

$$
\|\tilde{\mathbf{b}}-\mathbf{b}\|=\|(F(\mathbf{x})-\mathbf{b})-(F(\mathbf{x})-\tilde{\mathbf{b}})\| \leq\|F(\mathbf{x})-\mathbf{b}\|+\|F(\mathbf{x})-\tilde{\mathbf{b}}\|<\epsilon+\epsilon \leq\|\tilde{\mathbf{b}}-\mathbf{b}\| .
$$

Note that the ' \leq ' in this estimate follows from the triangle inequality, and the ' $<$ ' follows from my choice of ϵ. At any rate, no real number is smaller than itself, so I have reached a contradiction and conclude that F cannot have two different limits at a.

Definition 1.6. We say that a function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is continuous at $\mathbf{a} \in \mathbf{R}^{n}$ if F is defined near and at \mathbf{a} and

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=F(\mathbf{a})
$$

If F is continuous at all points in its domain, we say simply that F is continuous.
Now let us verify that many familiar scalar-valued functions are continuous.
Proposition 1.7. The following are continuous functions.
(a) The constant function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, given by $f(\mathbf{x})=c$ for some fixed $c \in \mathbf{R}$ and all $\mathbf{x} \in \mathbf{R}^{n}$.
(b) The magnitude function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ given by $f(\mathbf{x})=\|\mathbf{x}\|$.
(c) The addition function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$.
(d) The multiplication function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
(e) The reciprocal function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=1 / x$.

Proof. (a) Fix a point $\mathbf{a} \in \mathbf{R}^{n}$. Given $\epsilon>0$, let $\delta>0$ be any positive number, e.g. $\delta=1$ (it won't matter). Then if $\|\mathbf{x}-\mathbf{a}\|<\delta$ it follows that

$$
|f(\mathbf{x})-f(\mathbf{a})|=|c-c|=0<\epsilon
$$

So the constant function $f(\mathbf{x})=c$ is continuous at any point $\mathbf{a} \in \mathbf{R}^{n}$.
(b) Fix a point $\mathbf{a} \in \mathbf{R}^{n}$. Given $\epsilon>0$, let $\delta=\epsilon$. Then if $\|\mathbf{x}-\mathbf{a}\|<\delta$, it follows that

$$
|f(\mathbf{x})-f(\mathbf{a})|=|\|\mathbf{x}\|-\|\mathbf{a}\|| \leq\|\mathbf{x}-\mathbf{a}\|<\delta=\epsilon
$$

The ' $<$ ' here follows from Problem 1.2.17 (on Homework 1) in Shifrin. Hence $f(\mathbf{x})=$ $\|\mathbf{x}\|$ is continuous at any point $\mathbf{a} \in \mathbf{R}^{n}$.
(c) Fix a point $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$. Given $\epsilon>0$, let $\delta=\epsilon / 2$. Then if $\|\mathbf{x}-\mathbf{a}\|<\delta$, it follows that

$$
|f(\mathbf{x})-f(\mathbf{a})|=\left|x_{1}+x_{2}-a_{1}-a_{2}\right| \leq\left|x_{1}-a_{1}\right|+\left|x_{2}-a_{2}\right|<\delta+\delta=\epsilon
$$

Hence $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ is continuous at any point $\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$.
(d) Fix a point $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$. Given $\epsilon>0$, let $\delta=\min \left\{1, \epsilon\left(1+\left|a_{1}\right|+\left|a_{2}\right|\right)^{-1}\right\}$. Then if $\|\mathbf{x}-\mathbf{a}\|<\delta$, it follows that

$$
\begin{aligned}
|f(\mathbf{x})-f(\mathbf{a})| & =\left|x_{1} x_{2}-a_{1} a_{2}\right|=\left|\left(x_{1} x_{2}-x_{1} a_{2}\right)+\left(x_{1} a_{2}-a_{1} a_{2}\right)\right| \\
& \leq\left|x_{1} x_{2}-x_{1} a_{2}\right|+\left|x_{1} a_{2}-a_{1} a_{2}\right|=\left|x_{1}\right|\left|x_{2}-a_{2}\right|+\left|a_{2}\right|\left|x_{1}-a_{1}\right| \\
& <\delta\left(\left|x_{1}\right|+\left|a_{2}\right|\right)<\delta\left(\left|a_{1}\right|+1+\left|a_{2}\right|\right) \leq \epsilon .
\end{aligned}
$$

Notice that the final ' $<$ ' follows from the fact that $\left|x_{1}-a_{1}\right|<\delta \leq 1$. Hence $f\left(x_{1}, x_{2}\right)=$ $x_{1} x_{2}$ is continuous at any point $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbf{R}^{2}$.
(e) Homework exercise.

Theorem 1.8. Linear transformations $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ are continuous.
This one requires a little warm-up. If A is an $m \times n$ matrix, let us define the magnitude of A to be the quantity

$$
\|A\|:=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}} .
$$

That is, we are measuring the size of A as if it were a vector in $\mathbf{R}^{m n}$. Be aware that elsewhere in mathematics (including Shifrin), there are other notions of the magnitude of a matrix.

Lemma 1.9. Given any matrix $A \in \mathcal{M}_{m \times n}$ and any vector $\mathbf{x} \in \mathbf{R}^{n}$, we have $\|A \mathbf{x}\| \leq$ $\|A\|\|\mathbf{x}\|$.

Proof. Let row_{i} denote the i th row of A. Then on the one hand, we have

$$
\|A\|^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}=\sum_{i=1}^{m}\left\|\operatorname{row}_{i}\right\|^{2} .
$$

But on the other hand, the i th entry of $A \mathbf{x}$ is $\operatorname{row}_{i} \cdot \mathbf{x}$. Hence from the Cauchy-Schwartz inequality, we obtain

$$
\|A \mathbf{x}\|^{2}=\sum_{i=1}^{m}\left(\mathbf{r o w}_{i} \cdot \mathbf{x}\right)^{2} \leq \sum_{i=1}^{m}\left\|\mathbf{r o w}_{i}\right\|^{2}\|\mathbf{x}\|^{2}=\|\mathbf{x}\|^{2} \sum_{i=1}^{m}\left\|\mathbf{r o w}_{i}\right\|^{2}=\|A\|^{2}\|\mathbf{x}\|^{2}
$$

Proof of Theorem 1.8. Let $A \in \mathcal{M}_{m \times n}$ be the standard matrix of the linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $\mathbf{a} \in \mathbf{R}^{n}$ be any point. Given $\epsilon>0$, I choose $\delta=\frac{\epsilon}{\|A\|}$. Then if $\|\mathbf{x}-\mathbf{a}\|<\delta$, it follows that

$$
\|T(\mathbf{x})-T(\mathbf{a})\|=\|T(\mathbf{x}-\mathbf{a})\|=\|A(\mathbf{x}-\mathbf{a})\| \leq\|A\|\|\mathbf{x}-\mathbf{a}\|<\|A\| \delta=\epsilon
$$

Hence T is continuous at any point $\mathbf{a} \in \mathbf{R}^{n}$
Questions about limits of vector-valued functions can always be reduced to questions about scalar-valued functions.

Proposition 1.10. Suppose that $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a vector-valued function $F=\left(F_{1}, \ldots, F_{m}\right)$ defined near $\mathbf{a} \in \mathbf{R}^{n}$. Then the following are equivalent.
(a) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b} \in \mathbf{R}^{m}$.
(b) $\lim _{\mathbf{x} \rightarrow \mathbf{a}}\|F(\mathbf{x})-\mathbf{b}\|=0$.
(c) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F_{j}(\mathbf{x})=b_{j}$ for $1 \leq j \leq m$.

Proof of Proposition 1.10.
$(\mathrm{a}) \Longrightarrow(\mathrm{b})$ Suppose that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$ and set $f(\mathbf{x}):=\|F(\mathbf{x})-\mathbf{b}\|$. Given $\epsilon>0$, the definition of limit gives me $\delta>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ implies that $\|F(\mathbf{x})-\mathbf{b}\|<\epsilon$. But this last inequality can be rewritten $|f(\mathbf{x})-0|<\epsilon$. Thus $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=0$, i.e. (b) holds.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$ Similar.
(a) \Longrightarrow (c) Suppose again that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$. Fix an index j between 1 and m and let $\epsilon>0$ be given. Since $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$, there exists $\delta>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ implies that $\|F(\mathbf{x})-\mathbf{b}\|<\epsilon$. Then by Proposition 1.3, I also have that

$$
\left|F_{j}(\mathbf{x})-b_{j}\right| \leq\|F(\mathbf{x})-\mathbf{b}\|<\epsilon
$$

So $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F_{j}(\mathbf{x})=b_{j}$.
$(\mathrm{c}) \Longrightarrow$ (a) Suppose that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F_{j}(\mathbf{x})=b_{j}$ for each $1 \leq j \leq m$. Then given any $\epsilon>0$, there exist real numbers $\delta_{j}>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta_{j}$ implies that $\left|F_{j}(\mathbf{x})-b_{j}\right|<\frac{\epsilon}{\sqrt{m}}$. Taking $\delta=\min \left\{\delta_{1}, \ldots, \delta_{m}\right\}$, I infer that $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ implies $\left|F_{j}(\mathbf{x})-b_{j}\right|<\frac{\epsilon}{\sqrt{m}}$ for all indices j. Thus by the lemma,

$$
\|F(\mathbf{x})-\mathbf{b}\|<\sqrt{m} \frac{\epsilon}{\sqrt{m}}=\epsilon
$$

So $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathrm{x})=\mathbf{b}$.
The following theorem is sometimes paraphrased by saying that limits commute with continuous functions.

Theorem 1.11 (composite limits). Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $G: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ be functions and $\mathbf{a} \in \mathbf{R}^{n}, \mathbf{b} \in \mathbf{R}^{m}$ be points such that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$ and G is continuous at \mathbf{b}. Then

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} G \circ F(\mathbf{x})=G\left(\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})\right)=G(\mathbf{b})
$$

Proof. Let $\epsilon>0$ be given. By continuity of G at \mathbf{b}, there exists a number $\epsilon^{\prime}>0$ such that $\|\mathbf{y}-\mathbf{b}\|<\epsilon^{\prime}$ implies $\|G(\mathbf{y})-G(\mathbf{b})\|<\epsilon$. Likewise, since $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$, there exists $\delta>0$ such that $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ implies that $\|F(\mathbf{x})-\mathbf{b}\|<\epsilon^{\prime}$. Putting these two
things together, I see that $0<\|\mathbf{x}-\mathbf{a}\|<\delta$ further implies that $\|G(F(\mathbf{x}))-G(\mathbf{b})\|<\epsilon$. So $\lim _{\mathbf{x} \rightarrow \mathbf{a}} G(F(\mathbf{x}))=G(\mathbf{b})$.

Corollary 1.12. Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $G: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ be continuous functions. Then $G \circ F$ is continuous.

Proof. Note that $G \circ F$ is defined at $\mathbf{a} \in \mathbf{R}^{n}$ precisely when F is defined at a and G is defined at $F(\mathbf{a})$. Then Since both functions are continuous wherever they are defined, we have

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} G(F(\mathbf{x}))=G\left(\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})\right)=G(F(\mathbf{a}))
$$

Hence $G \circ F$ is continuous at any point $\mathbf{a} \in \mathbf{R}^{n}$ where it is defined.
Corollary 1.13. Let $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be functions with limits $\lim _{x \rightarrow a} f(x)=b$ and $\lim _{x \rightarrow a} g(x)=$ c at some point $a \in \mathbf{R}^{n}$. Then
(a) $\lim _{x \rightarrow a}|f(x)|=|b|$.
(b) $\lim _{x \rightarrow a} f(x)+g(x)=b+c$;
(c) $\lim _{x \rightarrow a} f(x) g(x)=b c$;
(d) $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{b}$, provided $b \neq 0$.

Hence a sum or product of continuous functions is continuous, as is the reciprocal of a continuous function.

Actually, the corollary extends to dot products, magnitudes and sums of vector-valued functions $F, G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, too. I'll let you write down the statements of these facts.
Proof. I prove (c). The other parts are similar. Let $F: \mathbf{R} \rightarrow \mathbf{R}^{2}$ be given by $F(x):=$ $(f(x), g(x))$ and $m: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be the multiplication function $m\left(y_{1}, y_{2}\right):=y_{1} y_{2}$. Recall that m is continuous (Proposition 1.7). Moreover, Proposition 1.10 and our hypotheses about f and g imply that $\lim _{x \rightarrow a} F(x)=(b, c)$. Hence I infer from Theorem 1.11 that

$$
\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} m(F(x))=m\left(\lim _{x \rightarrow a} F(x)\right)=m(b, c)=b c .
$$

When used with the fact that functions can't have more than one limit at a given point, Theorem 1.11 leads to a useful criterion for establishing that a limit doesn't exist.

Definition 1.14. A parametrized curve is a continuous function $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{n}$.
Corollary 1.15. Given a function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ defined near a point $\mathbf{a} \in \mathbf{R}^{n}$, suppose that $\gamma_{1}, \gamma_{2}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ are parametrized curves such that $\gamma_{1}(t)=\gamma_{2}(t)=a$ if and only if $t=0$. If the limits $\lim _{t \rightarrow 0} F \circ \gamma_{1}(t)$ and $\lim _{t \rightarrow 0} F \circ \gamma_{2}(t)$ are not equal, then $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})$ does not exist.

Proof. I will prove the contrapositive statement: suppose that $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{b}$ exists and $\gamma_{1}, \gamma_{2}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ are parametrized curves with initial points $\gamma_{j}(0)=a$ but $\gamma_{j}(t) \neq a$ for $t \neq a$. Then the limits $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})$ and $\lim _{t \rightarrow 0} F \circ \gamma_{j}(t)$ do not concern the value of F at a. So I may assume with no loss of generality that $F(\mathbf{a})=\mathbf{b}$, i.e. that F is actually continuous at \mathbf{a}.

Theorem 1.11 then tells me that

$$
\lim _{t \rightarrow 0} F \circ \gamma_{1}(t)=F\left(\lim _{t \rightarrow 0} \gamma_{1}(t)\right)=F\left(\gamma_{1}(0)\right)=F(\mathbf{a})=\mathbf{b}
$$

The second equality holds because γ_{1} is continuous. Likewise, $\lim _{t \rightarrow 0} F \circ \gamma_{2}(t)=\mathbf{b}$. In particular, the two limits are the same.

I remark that if $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{n}$ is a continuous curve and $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a function, then the composite function $F \circ \gamma: \mathbf{R} \rightarrow \mathbf{R}^{m}$ is sometimes called the restriction of F to γ.

One last fact about limits that will prove useful for us is the following.
Theorem 1.16 (The Squeeze Theorem). Suppose that $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are functions defined near $\mathbf{a} \in \mathbf{R}^{n}$. Suppose there exists $r>0$ such that

- $\|F(\mathbf{x})\| \leq|g(\mathbf{x})|$ for all $\mathbf{x} \in B^{*}(\mathbf{a}, r)$;
- $\lim _{\mathbf{x} \rightarrow \mathbf{a}} g(\mathbf{x})=0$.

Then $\lim _{\mathbf{x} \rightarrow \mathbf{a}} F(\mathbf{x})=\mathbf{0}$.
Proof. Exercise.

