
1. Limits and Continuity

It is often the case that a non-linear function of n-variables x = (x1, . . . , xn) is not really
defined on all of Rn. For instance f(x1, x2) = x1x2

x21−x22
is not defined when x1 = ±x2. However,

I will adopt a convention from the vector calculus notes of Jones and write F : Rn → Rm

regardless, meaning only that the source of F is some subset of Rn. While a bit imprecise,
this will not cause any big problems and will simplify many statements.

I will often distinguish between functions f : Rn → R that are scalar-valued and functions
F : Rn → Rm, m ≥ 2 that are vector-valued, using lower-case letters to denote the former and
upper case letters to denote the latter. Note that any vector-valued function F : Rn → Rm

may be written F = (F1, . . . , Fm) where Fj : Rn → R are scalar-valued functions called the
components of F . For example, F : R2 → R2 given by F (x1, x2) = (x1x2, x1 +x2) is a vector
valued function with components F1(x1, x2) = x1x2 and F2(x1, x2) = x1 + x2.

Definition 1.1. Let a ∈ Rn be a point and r > 0 be a positive real number. The open ball
of radius r about a is the set

B(a, r) := {x ∈ Rn : ‖x− a‖ < r}.

I will also use B∗(a, r) to denote the set of all x ∈ B(a, r) except x = a.

Proposition 1.2. Let a,b ∈ Rn be points and r, s > 0 be real numbers. Then

• B(a, r) ⊂ B(b, s) if and only if ‖a− b‖ ≤ s− r.
• B(a, r) ∩B(b, s) = ∅ if and only if ‖a− b‖ ≥ s+ r.

Proof. Exercise. Both parts depend on the triangle inequality. �

Extending my above convention, I will say that a function F : Rn → Rm is defined near
a point a ∈ Rn if there exists r > 0 such that F (x) is defined for all points x ∈ B(a, r),
except possibly the center x = a.

Below I will need the following inequality relating the magnitude of a vector to the sizes
of its coordinates.

Proposition 1.3. For any vector v =

 v1
...
vn

 ∈ Rn we have for each 1 ≤ j ≤ n that

|vj| ≤ ‖v‖ ≤
√
n max

1≤j≤n
|vj|.

Proof. Suppose that vJ is the coordinate of v with largest absolute value. Then for any
index j, we have

v2j ≤
n∑
i=1

v2i ≤ nv2J .

Taking square roots throughout gives the inequalities in the statement of the lemma. �

Now we come to the main point. The idea of a ‘limit’ is one of the most important in
all of mathematics. In differential calculus, it is the key to relating non-linear (i.e. hard)
functions to linear (i.e. easier) functions.
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Definition 1.4. Suppose that F : Rn → Rm is a function defined near a point a ∈ Rn. We
say that F (x) has limit b ∈ Rm as x approaches a, i.e.

lim
x→a

F (x) = b ∈ Rm,

if for each ε > 0 there exists δ > 0 such that 0 < ‖x− a‖ < δ implies ‖F (x)− b‖ < ε.

Notice that the final phrase in this definition can be written in terms of balls instead of
magnitudes: for any ε > 0 there exists δ > 0 such that x ∈ B∗(a, δ) implies F (x) ∈ B(b, ε).

A function might or might not have a limit as x approaches some given point a, but it
never has more than one.

Proposition 1.5 (uniqueness of limits). If F : Rn → Rm is defined near a ∈ Rn, then there
is at most one point b ∈ Rm such that limx→a F (x) = b.

Proof. Suppose, in order to reach a contradiction, that F (x) converges to two different

points b, b̃ ∈ Rm as x approaches a. Then the quantity ε := 1
2

∥∥∥b̃− b
∥∥∥ is positive. So by

the definition of limit, there exists a number δ1 > 0 such that 0 < ‖x− a‖ < δ1 implies
‖F (x)− b‖ < ε. Likewise, there exists a number δ2 > 0 such that 0 < ‖x− a‖ < δ2 implies∥∥∥F (x)− b̃

∥∥∥ < ε. So if I let δ = min{δ1, δ2} be the smaller bound, then 0 < ‖x− a‖ < δ

implies that∥∥∥b̃− b
∥∥∥ =

∥∥∥(F (x)− b)− (F (x)− b̃)
∥∥∥ ≤ ‖F (x)− b‖ +

∥∥∥F (x)− b̃
∥∥∥ < ε+ ε ≤

∥∥∥b̃− b
∥∥∥ .

Note that the ‘≤’ in this estimate follows from the triangle inequality, and the ‘<’ follows
from my choice of ε. At any rate, no real number is smaller than itself, so I have reached a
contradiction and conclude that F cannot have two different limits at a. �

Definition 1.6. We say that a function F : Rn → Rm is continuous at a ∈ Rn if F is
defined near and at a and

lim
x→a

F (x) = F (a).

If F is continuous at all points in its domain, we say simply that F is continuous.

Now let us verify that many familiar scalar-valued functions are continuous.

Proposition 1.7. The following are continuous functions.

(a) The constant function f : Rn → R, given by f(x) = c for some fixed c ∈ R and all
x ∈ Rn.

(b) The magnitude function f : Rn → R given by f(x) = ‖x‖.
(c) The addition function f : R2 → R given by f(x1, x2) = x1 + x2.
(d) The multiplication function f : R2 → R given by f(x1, x2) = x1x2.
(e) The reciprocal function f : R→ R given by f(x) = 1/x.

Proof. (a) Fix a point a ∈ Rn. Given ε > 0, let δ > 0 be any positive number, e.g. δ = 1
(it won’t matter). Then if ‖x− a‖ < δ it follows that

|f(x)− f(a)| = |c− c| = 0 < ε.

So the constant function f(x) = c is continuous at any point a ∈ Rn.
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(b) Fix a point a ∈ Rn. Given ε > 0, let δ = ε. Then if ‖x− a‖ < δ, it follows that

|f(x)− f(a)| = | ‖x‖ − ‖a‖ | ≤ ‖x− a‖ < δ = ε.

The ‘<’ here follows from Problem 1.2.17 (on Homework 1) in Shifrin. Hence f(x) =
‖x‖ is continuous at any point a ∈ Rn.

(c) Fix a point a = (a1, a2) ∈ R2. Given ε > 0, let δ = ε/2. Then if ‖x− a‖ < δ, it
follows that

|f(x)− f(a)| = |x1 + x2 − a1 − a2| ≤ |x1 − a1|+ |x2 − a2| < δ + δ = ε.

Hence f(x1, x2) = x1 + x2 is continuous at any point (a1, a2) ∈ R2.

(d) Fix a point a = (a1, a2) ∈ R2. Given ε > 0, let δ = min{1, ε(1 + |a1|+ |a2|)−1}. Then
if ‖x− a‖ < δ, it follows that

|f(x)− f(a)| = |x1x2 − a1a2| = |(x1x2 − x1a2) + (x1a2 − a1a2)|
≤ |x1x2 − x1a2|+ |x1a2 − a1a2| = |x1||x2 − a2|+ |a2||x1 − a1|
< δ(|x1|+ |a2|) < δ(|a1|+ 1 + |a2|) ≤ ε.

Notice that the final ‘<’ follows from the fact that |x1−a1| < δ ≤ 1. Hence f(x1, x2) =
x1x2 is continuous at any point a = (a1, a2) ∈ R2.

(e) Homework exercise.
�

Theorem 1.8. Linear transformations T : Rn → Rm are continuous.

This one requires a little warm-up. If A is an m × n matrix, let us define the magnitude
of A to be the quantity

‖A‖ :=

√√√√ m∑
i=1

n∑
j=1

a2ij.

That is, we are measuring the size of A as if it were a vector in Rmn. Be aware that elsewhere
in mathematics (including Shifrin), there are other notions of the magnitude of a matrix.

Lemma 1.9. Given any matrix A ∈ Mm×n and any vector x ∈ Rn, we have ‖Ax‖ ≤
‖A‖ ‖x‖.

Proof. Let rowi denote the ith row of A. Then on the one hand, we have

‖A‖2 =
m∑
i=1

n∑
j=1

a2ij =
m∑
i=1

‖rowi‖2 .

But on the other hand, the ith entry of Ax is rowi · x. Hence from the Cauchy-Schwartz
inequality, we obtain

‖Ax‖2 =
m∑
i=1

(rowi · x)2 ≤
m∑
i=1

‖rowi‖2 ‖x‖2 = ‖x‖2
m∑
i=1

‖rowi‖2 = ‖A‖2 ‖x‖2 .

�
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Proof of Theorem 1.8. Let A ∈ Mm×n be the standard matrix of the linear transformation
T : Rn → Rm and a ∈ Rn be any point. Given ε > 0, I choose δ = ε

‖A‖ . Then if ‖x− a‖ < δ,

it follows that

‖T (x)− T (a)‖ = ‖T (x− a)‖ = ‖A(x− a)‖ ≤ ‖A‖ ‖x− a‖ < ‖A‖ δ = ε.

Hence T is continuous at any point a ∈ Rn �

Questions about limits of vector-valued functions can always be reduced to questions about
scalar-valued functions.

Proposition 1.10. Suppose that F : Rn → Rm is a vector-valued function F = (F1, . . . , Fm)
defined near a ∈ Rn. Then the following are equivalent.

(a) limx→a F (x) = b ∈ Rm .
(b) limx→a ‖F (x)− b‖ = 0.
(c) limx→a Fj(x) = bj for 1 ≤ j ≤ m.

Proof of Proposition 1.10.
(a) =⇒ (b) Suppose that limx→a F (x) = b and set f(x) := ‖F (x)− b‖. Given ε > 0, the
definition of limit gives me δ > 0 such that 0 < ‖x− a‖ < δ implies that ‖F (x)− b‖ < ε.
But this last inequality can be rewritten |f(x) − 0| < ε. Thus limx→a f(x) = 0, i.e. (b)
holds.

(b) =⇒ (a) Similar.

(a) =⇒ (c) Suppose again that limx→a F (x) = b. Fix an index j between 1 and m and let
ε > 0 be given. Since limx→a F (x) = b, there exists δ > 0 such that 0 < ‖x− a‖ < δ implies
that ‖F (x)− b‖ < ε. Then by Proposition 1.3, I also have that

|Fj(x)− bj| ≤ ‖F (x)− b‖ < ε.

So limx→a Fj(x) = bj.

(c) =⇒ (a) Suppose that limx→a Fj(x) = bj for each 1 ≤ j ≤ m. Then given any ε > 0, there
exist real numbers δj > 0 such that 0 < ‖x− a‖ < δj implies that |Fj(x)−bj| < ε√

m
. Taking

δ = min{δ1, . . . , δm}, I infer that 0 < ‖x− a‖ < δ implies |Fj(x) − bj| < ε√
m

for all indices

j. Thus by the lemma,

‖F (x)− b‖ <
√
m

ε√
m

= ε.

So limx→a F (x) = b. �

The following theorem is sometimes paraphrased by saying that limits commute with
continuous functions.

Theorem 1.11 (composite limits). Let F : Rn → Rm and G : Rm → Rp be functions and
a ∈ Rn, b ∈ Rm be points such that limx→a F (x) = b and G is continuous at b. Then

lim
x→a

G ◦ F (x) = G(lim
x→a

F (x)) = G(b).

Proof. Let ε > 0 be given. By continuity of G at b, there exists a number ε′ > 0 such
that ‖y − b‖ < ε′ implies ‖G(y)−G(b)‖ < ε. Likewise, since limx→a F (x) = b, there
exists δ > 0 such that 0 < ‖x− a‖ < δ implies that ‖F (x)− b‖ < ε′. Putting these two
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things together, I see that 0 < ‖x− a‖ < δ further implies that ‖G(F (x))−G(b)‖ < ε. So
limx→aG(F (x)) = G(b). �

Corollary 1.12. Let F : Rn → Rm and G : Rm → Rp be continuous functions. Then G◦F
is continuous.

Proof. Note that G◦F is defined at a ∈ Rn precisely when F is defined at a and G is defined
at F (a). Then Since both functions are continuous wherever they are defined, we have

lim
x→a

G(F (x)) = G(lim
x→a

F (x)) = G(F (a)).

Hence G ◦ F is continuous at any point a ∈ Rn where it is defined. �

Corollary 1.13. Let f, g : Rn → R be functions with limits limx→a f(x) = b and limx→a g(x) =
c at some point a ∈ Rn. Then

(a) limx→a |f(x)| = |b|.
(b) limx→a f(x) + g(x) = b+ c;
(c) limx→a f(x)g(x) = bc;
(d) limx→a

1
f(x)

= 1
b
, provided b 6= 0.

Hence a sum or product of continuous functions is continuous, as is the reciprocal of a
continuous function.

Actually, the corollary extends to dot products, magnitudes and sums of vector-valued
functions F,G : Rn → Rm, too. I’ll let you write down the statements of these facts.

Proof. I prove (c). The other parts are similar. Let F : R → R2 be given by F (x) :=
(f(x), g(x)) and m : R2 → R be the multiplication function m(y1, y2) := y1y2. Recall that
m is continuous (Proposition 1.7). Moreover, Proposition 1.10 and our hypotheses about f
and g imply that limx→a F (x) = (b, c). Hence I infer from Theorem 1.11 that

lim
x→a

f(x)g(x) = lim
x→a

m(F (x)) = m(lim
x→a

F (x)) = m(b, c) = bc.

�

When used with the fact that functions can’t have more than one limit at a given point,
Theorem 1.11 leads to a useful criterion for establishing that a limit doesn’t exist.

Definition 1.14. A parametrized curve is a continuous function γ : R→ Rn.

Corollary 1.15. Given a function F : Rn → Rm defined near a point a ∈ Rn, suppose that
γ1, γ2 : R → Rn are parametrized curves such that γ1(t) = γ2(t) = a if and only if t = 0.
If the limits limt→0 F ◦ γ1(t) and limt→0 F ◦ γ2(t) are not equal, then limx→a F (x) does not
exist.

Proof. I will prove the contrapositive statement: suppose that limx→a F (x) = b exists and
γ1, γ2 : R → Rn are parametrized curves with initial points γj(0) = a but γj(t) 6= a for
t 6= a. Then the limits limx→a F (x) and limt→0 F ◦ γj(t) do not concern the value of F at a.
So I may assume with no loss of generality that F (a) = b, i.e. that F is actually continuous
at a.

Theorem 1.11 then tells me that

lim
t→0

F ◦ γ1(t) = F (lim
t→0

γ1(t)) = F (γ1(0)) = F (a) = b.
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The second equality holds because γ1 is continuous. Likewise, limt→0 F ◦ γ2(t) = b. In
particular, the two limits are the same. �

I remark that if γ : R→ Rn is a continuous curve and F : Rn → Rm is a function, then
the composite function F ◦ γ : R→ Rm is sometimes called the restriction of F to γ.

One last fact about limits that will prove useful for us is the following.

Theorem 1.16 (The Squeeze Theorem). Suppose that F : Rn → Rm and g : Rn → R are
functions defined near a ∈ Rn. Suppose there exists r > 0 such that

• ‖F (x)‖ ≤ |g(x)| for all x ∈ B∗(a, r);
• limx→a g(x) = 0.

Then limx→a F (x) = 0.

Proof. Exercise. �


