1. INVERTING LINEAR TRANSFORMATIONS AND MATRICES

Let idy : X — X denote the ‘identify function’ on a set X, given by idx(x) = x for all
elements z € X.

Definition 1.1. A linear tranformation T : R™ — R™ is called invertible if there exists
another linear tranformation S : R™ — R™ such that T' o .S = idgm and S oT = idg~. We
call S the inverse of T', and we write T—! = S.

Theorem 1.2. Let T : R" — R™ be a linear transformation with standard matriz A €
M, sn. Then the following are equivalent

(1) T is invertible.

(2) There is a matrix B € M« such that AB = I,«m and BA = I«p.
(3) The equation Ax = b has a unique solution for every b € R™.

(4) A is square and non-singular.

Proof. My strategy will be to show that (1) <= (2) and (3) <= (4) and then finally
(2) <= (3).

That (1) and (2) are equivalent is more or less immediate: i.e. if S : R™ — R™ if some
other linear transformation and B be its matrix. From class we know that the matrix for T'oS
is AB and the matrix for idrm is I,,xm. Hence T o S = idgrm is equivalent to AB = I,,,xm.
Similarly, S o T = idg~ is the same as BA = I,y

To see that (3) and (4) are equivalent, note first that if (3) holds, then A must be row
equivalent to a matrix A in reduced echelon form with a pivot in every column (because
Ax = b has at most one solution) and a pivot in every row (because Ax = b has at least one
solution, no matter what b is). Since there is at most one pivot in each row and column, it
follows that the number of rows and columns of A are the same. That is, A and therefore also
A are square matrices. From here, the equivalence between (3) and (4) is part of Proposition
4.1.6 in Shifrin (which I stated in class, too).

To see that (2) = (3), let B € M,,x,, be the matrix in (2) and b € R™ be any given
vector. If x € R solves Ax = b, then

Bb = B(Ax) = (BA)x = Ix = x.
That is, x = Bb is the only possible solution of Ax = b. On the other hand, I can plug
back in to check that it really is a solution:

Ax = A(Bb) = (AB)b = Ib =b.
In short Ax = b has the unique solution x := Bb, i.e. (3) holds.

To see that (3) = (2), recall from above that (3) implies that m = n, so that A € M,,«,.
Ilet e; € R" be the jth standard basis vector and apply (3) to get a vector b; € R" satisfying

Ab; = e;. Then I define B := [bl bn} € M,,xn. It follows that
AB=[Ab; ... Ab,]=[e; ... e, =1
That BA = I, too, follows from the lemma below. O

Given the last item in this theorem, we can restrict out discussion of invertibility to linear
transformations with the same source and target.

Definition 1.3. A square matrizc A € M, «, is invertible if and only if there exists B €

M., such that AB = BA = 1. We then call B the inverse of A and write A~! := B.
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Lemma 1.4. Given two square matrices A, B € M x,, we have AB = I if and only if
BA=1.

I follow the argument given in Shifrin, which is rather clever.

Proof. Since AB = I and [ is a non-singular square matrix, it follows from our homework
problem 4.2.17b that A and B are both non-singular. Hence by Proposition 4.1.6 again the
linear system Bx = b has a solutions for any b € R". In particular, for each standard basis
vector e; € R" there is a vectors ¢; € R” such that Be; = e;. And as in the proof of the
Theorem, if [ set C' = [cl e cn] , then it follows that BC' = I. This allows me to compute
the product ABC' in two different ways. On the one hand ABC = A(BC) = Al = A. On
the other hand ABC = (AB)C = IC = C. Comparing the answers, I see that A = C. So
I = BC = BA, which is what I aimed to show. O



