1. INVERTING LINEAR TRANSFORMATIONS AND MATRICES

Let $id_X : X \to X$ denote the 'identify function' on a set X, given by $id_X(x) = x$ for all elements $x \in X$.

Definition 1.1. A linear transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ is called invertible if there exists another linear transformation $S : \mathbf{R}^m \to \mathbf{R}^n$ such that $T \circ S = \mathrm{id}_{\mathbf{R}^m}$ and $S \circ T = \mathrm{id}_{\mathbf{R}^n}$. We call S the inverse of T, and we write $T^{-1} = S$.

Theorem 1.2. Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with standard matrix $A \in \mathcal{M}_{m \times n}$. Then the following are equivalent

- (1) T is invertible.
- (2) There is a matrix $B \in \mathcal{M}_{n \times m}$ such that $AB = I_{m \times m}$ and $BA = I_{n \times n}$.
- (3) The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbf{R}^m$.
- (4) A is square and non-singular.

Proof. My strategy will be to show that (1) \iff (2) and (3) \iff (4) and then finally (2) \iff (3).

That (1) and (2) are equivalent is more or less immediate: i.e. if $S : \mathbf{R}^m \to \mathbf{R}^n$ if some other linear transformation and B be its matrix. From class we know that the matrix for $T \circ S$ is AB and the matrix for $\mathrm{id}_{\mathbf{R}^m}$ is $I_{m \times m}$. Hence $T \circ S = \mathrm{id}_{\mathbf{R}^m}$ is equivalent to $AB = I_{m \times m}$. Similarly, $S \circ T = \mathrm{id}_{\mathbf{R}^n}$ is the same as $BA = I_{n \times n}$.

To see that (3) and (4) are equivalent, note first that if (3) holds, then A must be row equivalent to a matrix \tilde{A} in reduced echelon form with a pivot in every column (because $A\mathbf{x} = \mathbf{b}$ has at most one solution) and a pivot in every row (because $A\mathbf{x} = \mathbf{b}$ has at *least* one solution, no matter what \mathbf{b} is). Since there is at most one pivot in each row and column, it follows that the number of rows and columns of \tilde{A} are the same. That is, \tilde{A} and therefore also A are square matrices. From here, the equivalence between (3) and (4) is part of Proposition 4.1.6 in Shifrin (which I stated in class, too).

To see that (2) \implies (3), let $B \in \mathcal{M}_{n \times m}$ be the matrix in (2) and $\mathbf{b} \in \mathbf{R}^m$ be any given vector. If $\mathbf{x} \in \mathbf{R}^m$ solves $A\mathbf{x} = \mathbf{b}$, then

$$B\mathbf{b} = B(A\mathbf{x}) = (BA)\mathbf{x} = I\mathbf{x} = \mathbf{x}.$$

That is, $\mathbf{x} = B\mathbf{b}$ is the only possible solution of $A\mathbf{x} = \mathbf{b}$. On the other hand, I can plug back in to check that it really is a solution:

$$A\mathbf{x} = A(B\mathbf{b}) = (AB)\mathbf{b} = I\mathbf{b} = \mathbf{b}.$$

In short $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} := B\mathbf{b}$, i.e. (3) holds.

To see that (3) \implies (2), recall from above that (3) implies that m = n, so that $A \in \mathcal{M}_{n \times n}$. I let $\mathbf{e}_j \in \mathbf{R}^n$ be the *j*th standard basis vector and apply (3) to get a vector $\mathbf{b}_j \in \mathbf{R}^n$ satisfying $A\mathbf{b}_j = \mathbf{e}_j$. Then I define $B := \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix} \in \mathcal{M}_{n \times n}$. It follows that

$$AB = \begin{bmatrix} A\mathbf{b}_1 & \dots & A\mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix} = I.$$

That BA = I, too, follows from the lemma below.

Given the last item in this theorem, we can restrict out discussion of invertibility to linear transformations with the same source and target.

Definition 1.3. A square matrix $A \in \mathcal{M}_{n \times n}$ is invertible if and only if there exists $B \in \mathcal{M}_{n \times n}$ such that AB = BA = I. We then call B the inverse of A and write $A^{-1} := B$.

Lemma 1.4. Given two square matrices $A, B \in \mathcal{M}_{n \times n}$, we have AB = I if and only if BA = I.

I follow the argument given in Shifrin, which is rather clever.

Proof. Since AB = I and I is a non-singular square matrix, it follows from our homework problem 4.2.17b that A and B are both non-singular. Hence by Proposition 4.1.6 again the linear system $B\mathbf{x} = \mathbf{b}$ has a solutions for any $\mathbf{b} \in \mathbf{R}^n$. In particular, for each standard basis vector $\mathbf{e}_j \in \mathbf{R}^n$ there is a vectors $\mathbf{c}_j \in \mathbf{R}^n$ such that $B\mathbf{c}_j = \mathbf{e}_j$. And as in the proof of the Theorem, if I set $C = [\mathbf{c}_1 \dots \mathbf{c}_n]$, then it follows that BC = I. This allows me to compute the product ABC in two different ways. On the one hand ABC = A(BC) = AI = A. On the other hand ABC = (AB)C = IC = C. Comparing the answers, I see that A = C. So I = BC = BA, which is what I aimed to show. \Box