1. Inverting linear transformations and matrices

Let $\operatorname{id}_{X}: X \rightarrow X$ denote the 'identify function' on a set X, given by $\operatorname{id}_{X}(x)=x$ for all elements $x \in X$.

Definition 1.1. A linear tranformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is called invertible if there exists another linear tranformation $S: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ such that $T \circ S=\mathrm{id}_{\mathbf{R}^{m}}$ and $S \circ T=\mathrm{id}_{\mathbf{R}^{n}}$. We call S the inverse of T, and we write $T^{-1}=S$.

Theorem 1.2. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with standard matrix $A \in$ $\mathcal{M}_{m \times n}$. Then the following are equivalent
(1) T is invertible.
(2) There is a matrix $B \in \mathcal{M}_{n \times m}$ such that $A B=I_{m \times m}$ and $B A=I_{n \times n}$.
(3) The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbf{R}^{m}$.
(4) A is square and non-singular.

Proof. My strategy will be to show that $(1) \Longleftrightarrow(2)$ and $(3) \Longleftrightarrow(4)$ and then finally (2) \Longleftrightarrow (3).

That (1) and (2) are equivalent is more or less immediate: i.e. if $S: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ if some other linear transformation and B be its matrix. From class we know that the matrix for $T \circ S$ is $A B$ and the matrix for $\operatorname{id}_{\mathbf{R}^{m}}$ is $I_{m \times m}$. Hence $T \circ S=\operatorname{id}_{\mathbf{R}^{m}}$ is equivalent to $A B=I_{m \times m}$. Similarly, $S \circ T=\mathrm{id}_{\mathbf{R}^{n}}$ is the same as $B A=I_{n \times n}$.

To see that (3) and (4) are equivalent, note first that if (3) holds, then A must be row equivalent to a matrix \tilde{A} in reduced echelon form with a pivot in every column (because $A \mathbf{x}=\mathbf{b}$ has at most one solution) and a pivot in every row (because $A \mathbf{x}=\mathbf{b}$ has at least one solution, no matter what \mathbf{b} is). Since there is at most one pivot in each row and column, it follows that the number of rows and columns of \tilde{A} are the same. That is, \tilde{A} and therefore also A are square matrices. From here, the equivalence between (3) and (4) is part of Proposition 4.1.6 in Shifrin (which I stated in class, too).

To see that $(2) \Longrightarrow(3)$, let $B \in \mathcal{M}_{n \times m}$ be the matrix in (2) and $\mathbf{b} \in \mathbf{R}^{m}$ be any given vector. If $\mathbf{x} \in \mathbf{R}^{m}$ solves $A \mathbf{x}=\mathbf{b}$, then

$$
B \mathbf{b}=B(A \mathbf{x})=(B A) \mathbf{x}=I \mathbf{x}=\mathbf{x}
$$

That is, $\mathbf{x}=B \mathbf{b}$ is the only possible solution of $A \mathbf{x}=\mathbf{b}$. On the other hand, I can plug back in to check that it really is a solution:

$$
A \mathbf{x}=A(B \mathbf{b})=(A B) \mathbf{b}=I \mathbf{b}=\mathbf{b}
$$

In short $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}:=B \mathbf{b}$, i.e. (3) holds.
To see that $(3) \Longrightarrow(2)$, recall from above that (3) implies that $m=n$, so that $A \in \mathcal{M}_{n \times n}$. I let $\mathbf{e}_{j} \in \mathbf{R}^{n}$ be the j th standard basis vector and apply (3) to get a vector $\mathbf{b}_{j} \in \mathbf{R}^{n}$ satisfying $A \mathbf{b}_{j}=\mathbf{e}_{j}$. Then I define $B:=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}\end{array}\right] \in \mathcal{M}_{n \times n}$. It follows that

$$
A B=\left[\begin{array}{lll}
A \mathbf{b}_{1} & \ldots & A \mathbf{b}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n}
\end{array}\right]=I
$$

That $B A=I$, too, follows from the lemma below.
Given the last item in this theorem, we can restrict out discussion of invertibility to linear transformations with the same source and target.
Definition 1.3. A square matrix $A \in \mathcal{M}_{n \times n}$ is invertible if and only if there exists $B \in$ $\mathcal{M}_{n \times n}$ such that $A B=B A=I$. We then call B the inverse of A and write $A^{-1}:=B$.

Lemma 1.4. Given two square matrices $A, B \in \mathcal{M}_{n \times n}$, we have $A B=I$ if and only if $B A=I$.

I follow the argument given in Shifrin, which is rather clever.
Proof. Since $A B=I$ and I is a non-singular square matrix, it follows from our homework problem 4.2.17b that A and B are both non-singular. Hence by Proposition 4.1.6 again the linear system $B \mathbf{x}=\mathbf{b}$ has a solutions for any $\mathbf{b} \in \mathbf{R}^{n}$. In particular, for each standard basis vector $\mathbf{e}_{j} \in \mathbf{R}^{n}$ there is a vectors $\mathbf{c}_{j} \in \mathbf{R}^{n}$ such that $B \mathbf{c}_{j}=\mathbf{e}_{j}$. And as in the proof of the Theorem, if I set $C=\left[\begin{array}{lll}\mathbf{c}_{1} & \ldots & \mathbf{c}_{n}\end{array}\right]$, then it follows that $B C=I$. This allows me to compute the product $A B C$ in two different ways. On the one hand $A B C=A(B C)=A I=A$. On the other hand $A B C=(A B) C=I C=C$. Comparing the answers, I see that $A=C$. So $I=B C=B A$, which is what I aimed to show.

