
1. Inverting linear transformations and matrices

Let idX : X → X denote the ‘identify function’ on a set X, given by idX(x) = x for all
elements x ∈ X.

Definition 1.1. A linear tranformation T : Rn → Rm is called invertible if there exists
another linear tranformation S : Rm → Rn such that T ◦ S = idRm and S ◦ T = idRn. We
call S the inverse of T , and we write T−1 = S.

Theorem 1.2. Let T : Rn → Rm be a linear transformation with standard matrix A ∈
Mm×n. Then the following are equivalent

(1) T is invertible.
(2) There is a matrix B ∈Mn×m such that AB = Im×m and BA = In×n.
(3) The equation Ax = b has a unique solution for every b ∈ Rm.
(4) A is square and non-singular.

Proof. My strategy will be to show that (1) ⇐⇒ (2) and (3) ⇐⇒ (4) and then finally
(2) ⇐⇒ (3).

That (1) and (2) are equivalent is more or less immediate: i.e. if S : Rm → Rn if some
other linear transformation and B be its matrix. From class we know that the matrix for T ◦S
is AB and the matrix for idRm is Im×m. Hence T ◦ S = idRm is equivalent to AB = Im×m.
Similarly, S ◦ T = idRn is the same as BA = In×n.

To see that (3) and (4) are equivalent, note first that if (3) holds, then A must be row
equivalent to a matrix Ã in reduced echelon form with a pivot in every column (because
Ax = b has at most one solution) and a pivot in every row (because Ax = b has at least one
solution, no matter what b is). Since there is at most one pivot in each row and column, it
follows that the number of rows and columns of Ã are the same. That is, Ã and therefore also
A are square matrices. From here, the equivalence between (3) and (4) is part of Proposition
4.1.6 in Shifrin (which I stated in class, too).

To see that (2) =⇒ (3), let B ∈ Mn×m be the matrix in (2) and b ∈ Rm be any given
vector. If x ∈ Rm solves Ax = b, then

Bb = B(Ax) = (BA)x = Ix = x.

That is, x = Bb is the only possible solution of Ax = b. On the other hand, I can plug
back in to check that it really is a solution:

Ax = A(Bb) = (AB)b = Ib = b.

In short Ax = b has the unique solution x := Bb, i.e. (3) holds.
To see that (3) =⇒ (2), recall from above that (3) implies that m = n, so that A ∈Mn×n.

I let ej ∈ Rn be the jth standard basis vector and apply (3) to get a vector bj ∈ Rn satisfying
Abj = ej. Then I define B :=

[
b1 . . . bn

]
∈Mn×n. It follows that

AB =
[
Ab1 . . . Abn

]
=

[
e1 . . . en

]
= I.

That BA = I, too, follows from the lemma below. �

Given the last item in this theorem, we can restrict out discussion of invertibility to linear
transformations with the same source and target.

Definition 1.3. A square matrix A ∈ Mn×n is invertible if and only if there exists B ∈
Mn×n such that AB = BA = I. We then call B the inverse of A and write A−1 := B.
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Lemma 1.4. Given two square matrices A,B ∈ Mn×n, we have AB = I if and only if
BA = I.

I follow the argument given in Shifrin, which is rather clever.

Proof. Since AB = I and I is a non-singular square matrix, it follows from our homework
problem 4.2.17b that A and B are both non-singular. Hence by Proposition 4.1.6 again the
linear system Bx = b has a solutions for any b ∈ Rn. In particular, for each standard basis
vector ej ∈ Rn there is a vectors cj ∈ Rn such that Bcj = ej. And as in the proof of the
Theorem, if I set C =

[
c1 . . . cn

]
, then it follows that BC = I. This allows me to compute

the product ABC in two different ways. On the one hand ABC = A(BC) = AI = A. On
the other hand ABC = (AB)C = IC = C. Comparing the answers, I see that A = C. So
I = BC = BA, which is what I aimed to show. �


