
Important definitions and results

1. Algebra and geometry of vectors

Definition 1.1. A linear combination of vectors v1, . . . ,vk ∈ Rn is a vector of the form

c1v1 + · · ·+ ckvk

where c1, . . . , ck ∈ R are scalars. The span of v1, . . . ,vk is the set span(v1, . . . ,vk) of all
possible linear combinations of v1, . . . ,vk.

Definition 1.2. Let p ∈ Rn be a point and v ∈ Rn be a non-zero vector. The line through
p in direction v is the set

L = {p+ tv ∈ Rn : t ∈ R}.

Definition 1.3. The dot product of two vectors v,w ∈ Rn is the quantity

v ·w :=
n∑

j=1

vjwj.

The length of a vector v ∈ Rn is the quantity ‖v‖ :=
√

v · v.

Definition 1.4. Two vectors v,w ∈ Rn are parallel if one is a scalar multiple of the other.
They are orthogonal (or perpendicular) if v ·w = 0.

Theorem 1.5 (Orthogonal decomposition). Let v,w ∈ Rn be vectors such that w 6= 0.
Then there are unique vectors v‖,v⊥ ∈ Rn such that

• v = v‖ + v⊥;
• v‖ is parallel to w and v⊥ is orthogonal to w.

The proof of the theorem gives a formula for v‖, and I use this to define orthogonal
projection of v onto w.

Definition 1.6. Let v,w ∈ Rn be vectors such that w 6= 0 The orthogonal projection of v
onto w is the vector

proj
w

(v) :=
v ·w
‖w‖2

w.

Theorem 1.7 (Cauchy-Schwarz Inequality). For any vectors v,w ∈ Rn we have

|v ·w| ≤ ‖v‖ ‖w‖
with equality if and only if the vectors are parallel.

Theorem 1.8 (Triangle Inequality). For any vectors v,w ∈ Rn we have

‖v + w‖ ≤ ‖v‖ + ‖w‖ .
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2. Linear systems

An m× n matrix is an array A = (aij) where aij ∈ R for each 1 ≤ i ≤ m and 1 ≤ j ≤ n.

A = (aij) :=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn


The number aij is called the ij-entry of A. The vector

aj :=

 a1j
. . .
amj

 .
is called the jth column of A. Similarly, we call the vector

[ai1, . . . , ain]

the ith row of A. We will often write a matrix A = [a1, . . . , an] in terms of its columns.
Later we will sometimes write a matrix in terms of its rows.

We will letMm×n denote the set of all m×n matrices. A matrix is called square if m = n,
i.e. if it has the same number of rows as columns.

Definition 2.1. The product of a matrix A = [a1, . . . , an] ∈Mm×n with a vector x ∈ Rn is
the vector

Ax := x1a1 + · · ·+ xnan.

Note that in this definition it is important that the matrix and vector have compatible
sizes, i.e. that the number of columns of A equals the number of entries of x. Also, it is
important to write Ax instead of xA. The reason for this convention will become apparent
later.

There are two matrices that are quite special from the point of view of matrix/vector
multiplication. Specifically

• Let 0 ∈ Mm×n denote the matrix with all zero entries. Then 0x = 0 for every
x ∈ Rn.
• Let I ∈ Mn×n denote the square matrix with all ‘diagonal’ entries aii = 1 and all

other entries equal to 0. Then Ix = x for all x ∈ Rn.

The matrix I is called the identity matrix.

Definition 2.2. An m× n linear system is a matrix/vector equation Ax = b, where A is
an m × n matrix (the coefficient matrix), x ∈ Rn is a vector with unknown entries and
b ∈ Rm is a vector with given entries. Moreover,

• The augmented matrix for the system is the m× (n+ 1) matrix
[
A b

]
.

• The system is homogeneous if b = 0.
• The system is consistent if there exists at least one solution x ∈ Rn.

Note that x = 0 is always a solution (called the trivial solution of a homogeneous system
Ax = 0. In class I discussed the notion of an elementary row operation, which turns one
m× n matrix A into another m× n matrix B.



December 13, 2015 3

Definition 2.3. Two matrices A,B ∈ Mm×n are row equivalent if one can be transformed
into the other by a finite sequence of elementary row operations. In this case, we write
A ∼ B.

Definition 2.4. Let A be an m×n matrix. The leftmost non-vanishing entry (if one exists)
in each row of A is called the pivot entry for that row. We say that A is in echelon form
if the pivot in each row lies to the right of the pivot in the previous row. In particular any
row with a non-zero entry is above any row with all zero entries. We further say that A is
in reduced echelon form if additionally

• Each pivot entry is equal to 1; and
• Each pivot entry is the only non-zero entry in its column.

Using the method of Gaussian elimination, one shows the following

Theorem 2.5. Every matrix is row equivalent to a matrix in reduced echelon form.

In fact, it can be shown (as Shifrin does but I won’t) that any given matrix A is row
equivalent to exactly one matrix in reduced echelon form. This is perhaps surprising since
the sequence of row operations needed to get to reduced echelon form is far from unique.

Definition 2.6. Let
[
A b

]
be the augmented matrix of a linear system and

[
Ã b̃

]
be a

row equivalent augmented matrix in reduced echelon form. The pivot variables of Ax = b

are the entries xj of x corresponding to pivot columns of
[
Ã b̃

]
. The other entries of x are

called free variables.

Note that (with the notation in this definition)

• Ax = b is consistent if and only if the last column of
[
Ãb̃
]

has no pivots.
• A consistent system Ax = b has exactly one solution if there are no free variables.
• A consistent system Ax = b has infinitely many solutions if there are free variables.

Since a matrix in (reduced) echelon form has at most one pivot in each row/column, linear
systems Ax = b behave best only when A is a square matrix. More precisely,

• If A is an m× n matrix with n > m, then solutions of Ax = b are never unique.
• If A is an m × n matrix with m > n, there always exist vectors b ∈ Rm such that
Ax = b is inconsistent.

For square matrices, life is usually better.

Definition 2.7. A square matrix A is non-singular if it is row equivalent to the identity
matrix.

Proposition 2.8. Let A be an n× n matrix. Then the following are equivalent.

• A is non-singular.
• Ax = 0 has only the trivial solution.
• Ax = b is consistent for any b ∈ Rn.
• Ax = b has a unique solution for some b ∈ Rn.
• Ax = b has a unique solution for any b ∈ Rn.

In particular, when A is a square matrix, whether or not Ax = b has a unique solution
depends on only A and not at all on b.
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3. Linear Transformations

Recall that a function f : X → Y from a set X to a set Y is a ‘rule’ that associates each
element x ∈ X to exactly one element f(x) ∈ Y . The sets X and Y are known as the source
(i.e. domain) and target (i.e. codomain) of the function. The set

f(X) := {y ∈ Y : y = f(x) for some x ∈ X}
is called the image (i.e. range) of the function.

Definition 3.1. A linear transformation is a function T : Rn → Rm satisfying

• T (cx) = cT (x)
• T (x + y) = T (x) + T (y)

for all vectors x,y ∈ Rn and scalars c ∈ R.

This definition can be restated by saying that T is linear if and only if T distributes over
linear combinations, i.e.

T (c1v1 + . . . ckvk) = c1T (v1) + . . . ckT (vk).

The most important example of a linear transformation is given by

Proposition 3.2. Let A be an m × n matrix and T : Rn → Rm be the function given by
T (x) = Ax. Then T is a linear transformation.

Thus we can rewrite a linear system Ax = b as T (x) = b where T is a linear transfor-
mation. This leads us to some information about the structure of the set of solutions of a
linear system.

Corollary 3.3. Given a matrix A ∈ Mm×n, suppose that the vectors x1, . . . ,xk ∈ Rn each
solve the homogeneous system Ax = 0. Then any linear combination x = c1x1 + · · · + ckxk

also solves Ax = 0.

Corollary 3.4. Given a matrix A ∈ Mm×n, a vector b ∈ Rm and a solution x0 ∈ Rn of
Ax = b, we have that

• for any other vector x1 ∈ Rn, x = x1 solves Ax = b if and only if x = x1−x0 solves
Ax = 0; and
• in particular x1 is the only solution of Ax = b if and only if Ax = 0 has only the

trivial solution.

It should be pointed out that different matrices A and B define different linear transfor-
mations T (x) = Ax and S(x) = Bx. If the sizes of A and B are different then S and T
don’t even have the same target and source. If A and B are different matrices of the same
size, then one of the columns aj of A must be different from the corresponding column bj

of B. Now if ej is the jth standard basis vector, i.e. the vector whose jth coordinate is 1
and all of whose other coordinates vanish, then we have T (ej) = aj 6= bj = S(ej). So again
T 6= S.

The idea of picking off columns of A by applying T to the standard basis vectors ej allows
us to show that all linear transformations (as I have defined them here) are represented by
matrices.

Proposition 3.5. Let T : Rn → Rm be a linear transformation and A be the matrix whose
jth column is T (ej). Then T (x) = Ax for all x ∈ Rn.
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We will call the matrix A in this proposition the standard matrix for T . Note in particular,
that the identity transformation id : Rn → Rn given by id(x) = x has standard matrix I
and the zero transformation 0 : Rn → Rm given by 0(x) = 0 has standard matrix 0.

3.1. Algebra of linear transformations.

Proposition 3.6. Let S, T : Rn → Rm be linear transformations and c ∈ R be a scalar.
Then T + S and cT are both linear transformations. If, moreover, A,B ∈ Mm×n are the
standard matrices for T and S, respectively, then

• the standard matrix for T +S is the matrix A+B obtained from A and B by adding
corresponding entries of these two matrices
• the standard matrix for cT is the matrix cA obtained by multiplying each entry of A

by c.

Note that addition and scalar multiplication of matrices works just like it does for vectors.
Hence all the rules that work for addition and scalar multiplication of vectors also work for
matrices. But for matrices we have a different sort of operation.

Proposition 3.7. Let S : Rp → Rn and T : Rn → Rm be linear transformations. Then
the composition T ◦ S : Rp → Rm is a linear transformation. If A and B are the standard
matrices for T and S, then the standard matrix for T ◦ S is the m× p matrix AB given by

AB :=
[
Ab1 . . . Abp

]
,

where b1, . . . ,bp are the columns of B.

Note that for a product AB to make sense, we need the number of rows of B to equal the
number of columns of A. Matrix multiplication behaves like regular multiplication in several
important ways. All of the following facts can be established by appealing to facts about
composition of linear transformations.

Proposition 3.8. Given matrices A,A′ ∈ Mm×n, B,B′ ∈ Mn×p, C ∈ Mp×q and a scalar
c ∈ R, we have

• Im×mA = AIn×n = A;
• (A+ A′)B = AB + A′B and A(B +B′) = AB + AB′;
• c(AB) = (cA)B = A(cB); and
• A(BC) = (AB)C.

The statement that is missing from this list (because it is false) is AB = BA. First of
all, the product on one side might make sense while the product on the other might not.
Secondly, even when both products make sense, they might result in matrices of different
sizes. And finally, even when A and B are square matrices of the same size, so that both
AB and BA make sense and are the same size, it is usually the case that AB 6= BA. So
watch out!

Definition 3.9. A linear transformation T : Rn → Rm is invertible if there is a linear
transformation S : Rm → Rn such that S ◦ T (x) = x and T ◦ S(y) = y for all x ∈ Rn and
y ∈ Rm. We call S the inverse of T and write T−1 = S.

Proposition 3.10. Let T : Rn → Rm be a linear transformation and A ∈ Mm×n be its
standard matrix. Then the following statements are equivalent.

(1) T is invertible.
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(2) There exists a matrix B ∈Mn×m such that AB = BA = I.
(3) For any b ∈ Rm the linear system Ax = b has exactly one solution.
(4) A is a non-singular square (i.e. m = n) matrix.

Definition 3.11. A square matrix A ∈ Mn×n is invertible if there is a matrix B ∈ Mn×n
such that AB = BA = I. We call B the inverse of A and write A−1 = B.

It is both interesting and convenient that one doesn’t need to check both AB and BA to
verify that A−1 = B.

Proposition 3.12. Let A,B ∈ Mn×n be square matrices. Then AB = I if and only if
BA = I.

Here are a couple more useful, albeit straightforward observations

Proposition 3.13. If A ∈ Mn×n is invertible, then so is A−1, and the inverse is given by
(A−1)−1 = A. If A1, . . . , Ak ∈Mn×n are invertible, then so is the product A1 . . . Ak, and the
inverse is given by

(A1 . . . Ak)−1 = A−1k . . . A−11 .

Definition 3.14. An elementary matrix E ∈Mn×n is one obtained by performing a single
elementary row operation on the identity matrix In×n.

One can check case-by-case that if A ∈ Mm×n is a matrix, then performing a given
elementary row operation on A results in the matrix EA, where E ∈Mm×m is the elementary
matrix for that row operation. Since, EA =

[
Ea1 . . . Ean

]
, it suffices to check that this

works for any vector a ∈ Rm. Since any row operation can be undone by some other row
operation, it follows that an elementary matrix E is invertible and that the inverse E−1 is
also an elementary matrix. The fact that any matrix is row equivalent to a matrix in reduced
echelon form can therefore be restated as follows.

Proposition 3.15. Any matrix A ∈ Mm×n can be decomposed A = Ek . . . E1Ã into a
product of elementary matrices Ej ∈ Mm×m and a matrix Ã in reduced echelon form. In
particular, any non-singular square matrix A can be written A = Ek . . . E1 as a product of
elementary matrices.
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4. Subspaces

The following definition formalizes and generalizes the notion of a line or plane through
the origin.

Definition 4.1. A set of vectors V ⊂ Rn is a subspace if

(1) 0 ∈ V ;
(2) for any v ∈ V and c ∈ R, we have cv ∈ V ; and
(3) for any v,w ∈ V , we have v + w ∈ V .

Note that Rn is a subspace of Rn. So is the trivial subspace {0} ⊂ Rn. Beyond this, there
are mainly only two other ways of obtaining subspaces of Rn.

Proposition 4.2. Let v1, . . . ,vk ∈ Rn be a list of vectors. Then span(v1, . . . ,vk) is a
subspace of Rn.

Definition 4.3. Let S ⊂ Rn be any set of vectors. The orthogonal complement of S is the
set

S⊥ := {v ∈ Rn : v ·w = 0 for all w ∈ S}.

Proposition 4.4. The orthogonal complement S⊥ of a set S ⊂ Rn is a subspace.

The set S in this proposition need not be a subspace itself. However, if it is, it can be
easier to test whether a vector belongs to S⊥.

Proposition 4.5. Given vectors v1, . . . ,vk ∈ Rn, let V = span{v1, . . . ,vk}. Then v ∈ V ⊥
if and only if v · v1 = · · · = v · vk = 0.

Each matrix gives rise to several different subspaces.

Definition 4.6. Let A =
[
a1 . . . an

]
∈Mm×n be a matrix.

• The column space of A is the span colA ⊂ Rm of the columns a1, . . . , an of A.
• The row space of A is likewise the span rowA ⊂ Rn of the rows of A.
• The null space of A is the set

nulA := {x ∈ Rn : Ax = 0}.

It is useful to observe that

Proposition 4.7. For any A ∈Mm×n, we have nulA = (rowA)⊥

Corollary 4.8. The column, row and null spaces of a matrix are all subspaces.

Word of caution: remember that the column space of an m×n matrix is a subspace of Rm,
whereas row and null spaces are subspaces of Rn. This is perhaps easier to keep straight if
you think in terms of the linear transformation T : Rn → Rm associated to A. The row and
null spaces are subspaces of the source Rn of T , whereas the column space of A is contained
in the target Rm of T . In fact, if you think it through, you’ll find that the column space of
A is the same as the image (i.e. range) T (Rn) of T .
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5. Bases and dimension

Definition 5.1. A finite sequence v1, . . . ,vk ∈ Rn is linearly independent if the only scalars
c1, . . . , ck ∈ R that satisfy

c1v1 + · · ·+ ckvk = 0

are c1 = · · · = ck = 0. Otherwise, v1, . . . ,vk are said to be linearly dependent.

The condition in this definition is sometimes stated sans equation as ‘the only linear
combination of v1, . . . ,vk that vanishes is the trivial one.’

Definition 5.2. Let V ⊂ Rn be a subspace. A finite sequence v1, . . . ,vk ∈ V is called a
basis for V if it is linearly independent and spans V .

Proposition 5.3. Let V ⊂ Rn be a subspace with basis v1, . . . ,vk ∈ V . Then for each
w ∈ V , there are unique scalars c1, . . . , ck such that

w = c1v1 + · · ·+ ckvk.

The scalars c1, . . . , ck in this proposition are called the coordinates of w with respect to
v1, . . . ,vk.

Note that the trivial subspace has no basis. The next theorem and its corollaries show
that non-trivial subspaces always have bases and that, while there might (in fact, certainly
will) be more than one basis for a given non-trivial subspace, any two such bases must have
the same size.

Theorem 5.4. Let V ⊂ Rn be a subspace. If v1, . . . ,vk ∈ V are linearly independent vectors
and w1, . . . ,w` ∈ V span V , then k ≤ `.

I include a proof for this one, because I like my way of saying it better than Shifrin’s.

Proof. Let A =
[
v1 . . . vk

]
∈ Mn×k and B =

[
w1 . . . w`

]
∈ Mn×`. By hypothesis,

there is no non-trivial linear combination of v1, . . . ,vk that vanishes. That is, there is no
non-trivial solution x ∈ Rk of the homogeneous linear system Ax = 0.

Similarly, the hypothesis vj ∈ V = span(w1, . . . ,w`) means that there exists a solution
y = cj ∈ R` of By = vj. Let C =

[
c1 . . . ck

]
∈M`×k. Then BC = A.

I claim that there is no non-trivial solution x ∈ Rk of Cx = 0. Indeed, if there were,
then we would have that Ax = BCx = 0, so that x would also be a non-trivial solution
of Ax = 0. The first paragraph rules this out, so my claim holds. That Cx = 0 has no
non-trivial solution means that when I use row operations to put C into reduced echelon
form C̃, the resulting matrix will have no free variables. That is, it will have a pivot in each
column. Since there is at most one pivot per row, C̃ must have at least as many rows as
columns. In short ` ≥ k. �

Corollary 5.5. Any non-trivial subspace V ⊂ Rn has a basis.

Corollary 5.6. Any two bases for the same subspace V ⊂ Rn have the same number of
vectors.

Definition 5.7. The dimension of a non-trivial subspace V ⊂ Rn is the number dimV of
elements in a basis for V . The trivial subspace {0} ⊂ Rn is said to have dimension 0.

In particular, dim Rn = n.
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Corollary 5.8. If V,W ⊂ Rn are subspaces and V ⊂ W , then dimV ≤ dimW . Equality
holds if and only if V = W .

Theorem 5.9. Suppose that A, Ã ∈Mm×n are row equivalent matrices and Ã is in reduced
echelon form.

• The columns of A corresponding to pivots of Ã form a basis for colA.
• The non-zero rows of Ã form a basis for rowA.
• The solutions of Ax = 0 obtained by setting one free variable equal to 1 and the

others to 0 form a basis for nulA.

In particular, both dim rowA and dim colA are equal to the number of pivots of Ã and
dim nulA is equal to the number of free variables of Ã.

In applying this theorem, be careful to note that you use columns of A to get a basis for
colA but rows of Ã to get a basis for rowA. Indeed rowA = row Ã in general, but colA is
usually not the same as col Ã.

Definition 5.10. The rank of a matrix is the dimension of its column space.

Corollary 5.11 (Rank Theorem). For any m× n matrix A, we have

dim colA+ dim nulA = n.

Corollary 5.12. For any subspace V ⊂ Rn we have

• dimV + dimV ⊥ = n;
• (V ⊥)⊥ = V ; and
• for any x ∈ Rn there are unique vectors x‖ ∈ V and x⊥ ∈ V ⊥ such that x = x‖+x⊥.

Corollary 5.13. Given a matrix A ∈Mm×n and a vector b ∈ Rm, suppose that Ax = b is
consistent. Then there is a unique solution x = xp ∈ rowA, and the set of all solutions of
Ax = b is given by

{xp + xh ∈ Rn : xh ∈ nulA}.

When a linear system Ax = b fails to be consistent, there is a ‘next best thing’ to a
solution.

Definition 5.14. Given A ∈ Mm×n and a vector b ∈ Rm, we call a vector x ∈ Rn a least
squares solution of Ax = b if the quantity ‖Ax− b‖ is minimal; i.e. if

‖Ax− b‖ ≤ ‖Ax̃− b‖
for any (other) x̃ ∈ Rn.

Note that if x actually solves Ax = b, then x is a least squares solution of Ax = b, and
that a least squares solution of Ax = b is an actual solution if and only if the minimum
value of ‖Ax− b‖ is zero. Unlike ordinary solutions, least squares solutions always exist.
Perhaps more surprisingly, there is a convenient way to find them by solving a different but
related linear system.

Corollary 5.15. For any A ∈ Mm×n and b ∈ Rm, the linear system Ax = b has at least
one least squares solution. Moreover, x ∈ Rn is a least squares solution of Ax = b if and
only if x satisfies

ATAx = ATb.
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The linear system ATAx = ATb is called the ‘normal equation’ associated to Ax = b.
The corollary implies that the normal equation is always consistent. But its solution does
not have to be unique.

Proposition 5.16. The least squares solution of a linear system Ax = b is unique if and
only if the nullspace of A is trivial.
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6. Limits and Continuity

It is often the case that a non-linear function of n-variables x = (x1, . . . , xn) is not really
defined on all of Rn. For instance f(x1, x2) = x1x2

x2
1−x2

2
is not defined when x1 = ±x2. However,

I will adopt a convention from the vector calculus notes of Jones and write F : Rn → Rm

regardless, meaning only that the source of F is some subset of Rn. While a bit imprecise,
this will not cause any big problems and will simplify many statements.

I will often distinguish between functions f : Rn → R that are scalar-valued and functions
F : Rn → Rm, m ≥ 2 that are vector-valued, using lower-case letters to denote the former and
upper case letters to denote the latter. Note that any vector-valued function F : Rn → Rm

may be written F = (F1, . . . , Fm) where Fj : Rn → R are scalar-valued functions called the
components of F . For example, F : R2 → R2 given by F (x1, x2) = (x1x2, x1 +x2) is a vector
valued function with components F1(x1, x2) = x1x2 and F2(x1, x2) = x1 + x2.

Definition 6.1. Let a ∈ Rn be a point and r > 0 be a positive real number. The open ball
of radius r about a is the set

B(a, r) := {x ∈ Rn : ‖x− a‖ < r}.

I will also use B∗(a, r) to denote the set of all x ∈ B(a, r) except x = a. Extending my
above convention, I will say that a function F : Rn → Rm is defined near a point a ∈ Rn

if there exists r > 0 such that F (x) is defined for all points x ∈ B∗(a, r), except possibly
the center x = a. The following definition of ‘limit’ is one of the most important in all of
mathematics. In differential calculus, it is the key to relating non-linear (i.e. hard) functions
to linear (i.e. easier) functions.

Definition 6.2. Suppose that F : Rn → Rm is a function defined near a point a ∈ Rn. We
say that F (x) has limit b ∈ Rm as x approaches a, i.e.

lim
x→a

F (x) = b ∈ Rm,

if for each ε > 0 there exists δ > 0 such that 0 < ‖x− a‖ < δ implies ‖F (x)− b‖ < ε.

Notice that the final phrase in this definition can be written in terms of balls instead of
magnitudes: for any ε > 0 there exists δ > 0 such that x ∈ B∗(a, δ) implies F (x) ∈ B(b, ε).

A function might or might not have a limit as x approaches some given point a, but it
never has more than one.

Proposition 6.3 (uniqueness of limits). If F : Rn → Rm is defined near a ∈ Rn, then there
is at most one point b ∈ Rm such that limx→a F (x) = b.

Definition 6.4. We say that a function F : Rn → Rm is continuous at a ∈ Rn if F is
defined near and at a and

lim
x→a

F (x) = F (a).

If F is continuous at all points in its domain, we say simply that F is continuous.

Proposition 6.5. The following are continuous functions.

• The constant function F : Rn → Rm, given by F (x) = b for some fixed b ∈ Rm and
all x ∈ Rn.
• The magnitude function f : Rn → R given by f(x) = ‖x‖.
• The addition function f : R2 → R given by f(x1, x2) = x1 + x2.
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• The multiplication function f : R2 → R given by f(x1, x2) = x1x2.
• The reciprocal function f : R→ R given by f(x) = 1/x.

Theorem 6.6. Linear transformations T : Rn → Rm are continuous.

The remaining results in this section are aimed at allowing us to answer questions about
limits without going all the way back to the definition of limit. The first result says that
limits of vector-valued functions can always be reduced to questions about scalar-valued
functions.

Proposition 6.7. Suppose that F : Rn → Rm is a vector-valued function F = (F1, . . . , Fm)
defined near a ∈ Rn. Then the following are equivalent.

(a) limx→a F (x) = b ∈ Rm .
(b) limx→a ‖F (x)− b‖ = 0.
(c) limx→a Fj(x) = bj for 1 ≤ j ≤ m.

The following theorem is sometimes paraphrased by saying that limits commute with
continuous functions.

Theorem 6.8 (limits commute with continuous functions). Let F : Rn → Rm and G :
Rm → Rp be functions and a ∈ Rn, b ∈ Rm be points such that limx→a F (x) = b and G is
continuous at b. Then

lim
x→a

G ◦ F (x) = G(b).

Corollary 6.9. Let F : Rn → Rm and G : Rm → Rp be continuous functions. Then G ◦ F
is continuous.

Corollary 6.10. Let f, g : Rn → R be functions with limits limx→a f(x) = b and limx→a g(x) =
c at some point a ∈ Rn. Then

• limx→a |f(x)| = |b|.
• limx→a f(x) + g(x) = b+ c;
• limx→a f(x)g(x) = bc;
• limx→a

1
f(x)

= 1
b
, provided b 6= 0.

Hence a sum or product of continuous functions is continuous, as is the reciprocal of a
continuous function.

Actually, the corollary extends to dot products, magnitudes and sums of vector-valued func-
tions F,G : Rn → Rm, too. I’ll let you write down the statements of these facts.

When used with the fact that functions can’t have more than one limit at a given point,
Theorem 6.8 leads to a useful criterion for establishing that a limit doesn’t exist.

Definition 6.11. A parametrized curve is a continuous function γ : R→ Rn.

Corollary 6.12. Given a function F : Rn → Rm defined near a point a ∈ Rn, suppose that
γ1, γ2 : R → Rn are parametrized curves such that γ1(t) = γ2(t) = a if and only if t = 0.
If the limits limt→0 F ◦ γ1(t) and limt→0 F ◦ γ2(t) are not equal, then limx→a F (x) does not
exist.

There is one more fact about limits that will prove useful for us.

Theorem 6.13 (The Squeeze Theorem). Suppose that F : Rn → Rm and g : Rn → R are
functions defined near a ∈ Rn. Suppose there exists r > 0 such that
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• ‖F (x)‖ ≤ |g(x)| for all x ∈ B(a, r), except possibly x = a;
• limx→a g(x) = 0.

Then limx→a F (x) = 0.
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7. Differentiability

Recall the definition of derivative from one variable calculus

Definition 7.1. We say that f : R→ R is differentiable at a point a ∈ R if the quantity

f ′(a) := lim
h→0

f(a+ h)− f(a)

h

exists. We then call f ′(a) the derivative of f at a.

One way to transfer this definition to higher dimensions is via ‘directional’ derivatives.

Definition 7.2. The directional derivative of a function F : Rn → Rm at a point a ∈ Rn

in the direction v ∈ Rn is the quantity (if it exists)

DvF (a) := lim
t→0

F (a + tv)− F (a)

t

When v = ej is a standard basis vector, we write ∂F
∂xj

(a) := DejF (a) and call this quantity

the partial derivative of F with respect to xj.

Another way of stating this definition is that DvF (a) = h′(0) where h : R → Rm is the
composite function

h(t) := F (a + tv)

obtained by restricting F to the line through a in the direction v. This way of formulating
directional derivatives is quite useful when you actually have to compute one!

A shortcoming of directional derivatives is that they don’t always do a very good job of
controlling the behavior of F near a given point a (see Section 3.1 e.g. 2 in Shifrin for a
good illustration of this). One needs a little bit more restrictive notion of derivative in order
to guarantee this sort of control.

Definition 7.3. We say that a function F : Rn → Rm is differentiable at a point a ∈ Rn

if there exists a linear transformation T : Rn → Rm such that

(1) lim
h→0

F (a + h)− F (a)− T h

‖h‖
= 0.

If such a T exists, then we call it the derivative of F at a write DF (a) := T .

So under this definition, the derivative DF (a) of F at a is not a number but rather a
linear transformation. This is not so strange if you remember any linear transformation
T : Rn → Rm has a standard matrix A ∈ Mm×n, so you can think of the derivative of F
at a more concretely as a matrix, i.e. as a collection of mn numbers that describe the way
all the different components of F = (F1, . . . , Fm) are changing in all the different directions
one can approach a. I’m sort of doing that already when I suppress parentheses in T (h) and
write Th instead.

In particular, if f : R→ R is just a scalar function of a single variable, then the number
f ′(a) above is just the lone entry in the 1×1 matrix for the linear transformation T : R→ R
given by T (h) = f ′(a)h.

Note that Equation (1) can be written in several slightly different but equivalent ways. For
instance, one could take the magnitude of the numerator and write instead (I’ll use DF (a)
in place of T now).

lim
h→0

‖F (a + h)− F (a)−DF (a)h‖
‖h‖

= 0.
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Or one could set x := a + h and rewrite the limit as

lim
x→a

F (x)− F (a)−DF (a)(x− a)

‖x− a‖
.

Another very useful way to restate (1) is to say that

F (a + h) = F (a) +DF (a)h + E(h),

where the ‘error term’ E(h) satisfies limh→0
‖E(h)‖
‖h‖ = 0.

The first result of this section indicates that differentiability of F at a gives us some control
of F at nearby values of a.

Theorem 7.4. If F : Rn → Rm is differentiable at a, then F is continuous at a.

The second fact about our new notion of derivative DF (a) is that it’s not that far from
partial and directional derivatives.

Proposition 7.5. Suppose that F : Rn → Rm is differentiable at a point a ∈ Rn. Then the
directional derivative of F at a in direction v ∈ Rn exists and is given by

DvF (a) = DF (a)v.

In particular, the matrix for the linear transformation DF (a) : Rn → Rm is given column-
wise by [

∂F
∂x1

(a) . . . ∂F
∂xn

(a)
]

Among other things, this proposition tells us that there is only one candidate for DF (a)
and gives us a practical means for finding out what it is (by taking partial derivatives). It
does not, however, tell us how to determine whether our candidate is a winner, i.e. whether
F is actually differentiable at a. For most purposes, the following condition suffices for that
purpose.

Definition 7.6. A function F : Rn → Rm is said to be continuously differentiable at a ∈ Rn

if all partial derivatives ∂F
∂xj

of F (exist and) are continuous at a. If F is continuously differ-

entiable at all points in its domain, they we say simply that ‘F is continuously differentiable’
(without reference to any point).

Continuously differentiable functions are often (alternatively) called ‘C1 functions’.

Theorem 7.7. If F : Rn → Rm is continuously differentiable at a, then F is differentiable
at a.

The proof of this theorem depends on two further results, both of some interest in their
own right. The first reduces the problem of differentiability for vector-valued functions to
the simpler case of scalar-valued functions.

Proposition 7.8. Let F : Rn → Rm be a vector-valued function with (scalar-valued) com-
ponents Fi : Rn → R, 1 ≤ i ≤ m. Then F is differentiable at a ∈ Rn if and only if all
the components Fi are differentiable at a. Moreover, the ith row of the standard matrix for
DF (a) is equal to the standard matrix for DFi(a).

The second is a (the?) central result from one variable calculus.
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Theorem 7.9 (Mean Value Theorem). Suppose that f : (a, b) → R is a differentiable
function on an open interval (a, b) and x, y ∈ (a, b) are two different points. Then there is a
number c between x and y such that

f ′(c) =
f(y)− f(x)

y − x
.

We will use the mean value theorem again later (e.g. to show equality of mixed partial
derivatives).
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8. More about derivatives

In one variable calculus, there are many facts about differentiation that allow one to
compute derivatives algebraically, without resorting to the actual limit definition. There are
similar facts in multi-variable calculus.

Theorem 8.1. Suppose that F,G : Rn → Rm are vector-valued functions and f, g : Rn → R
are scalar-valued functions, all differentiable at some point a ∈ Rn. Then

(a) F +G is differentiable at a and D(F +G)(a) = DF (a) +DG(a);
(b) fg is differentiable at a and D(fg)(a) = f(a)Dg(a) + g(a)Df(a);
(c) F ·G is differentiable at a and D(F ·G)(a)h = G(a) · (DF (a)h) + (DG(a)h) · F (a).

Note that this is almost the same as Proposition 3.3.1 in Shifrin, but the second item here
is a bit different (simpler and less general) than in Shifrin. These facts get used less often in
multivariable calculus than they do in one variable calculus, but they are occasionally useful.
The really important fact is the next one. Stating it in a straightforward and general way
depends very much on using total rather than partial derivatives.

Theorem 8.2 (Chain Rule). Suppose that G : Rn → Rm and F : Rm → R` are functions
such that G is differentiable at a ∈ Rn and F is differentiable at G(a) ∈ Rm. Then F ◦ G
is differentiable at a ∈ Rn and

D(F ◦G)a = DF (G(a)) ◦DG(a).

In other words, the derivative of a composition is the composition (or product, if you think
in matrix terms) of the derivatives. To see why this should be true on an intuitive level, one
should think in terms of linear approximations. That is, for x ∈ Rn near a we have

y := G(x) ≈ G(a) +DG(a)(x− a),

and for y ∈ Rm near G(a) we have

z := F (y) ≈ F (G(a)) +DF (G(a))(y −G(a)).

So taking y = G(x), we know that y is close to G(a) when x is close to a (why?). Therefore

F ◦G(x) ≈ F (G(a)) +DF (G(a))(G(x)−G(a))

≈ F (G(a)) +DF (G(a))DG(a)(x− a).

Note for the final approximation, I have simply replaced G(x) with its linear approximation
and the G(a) terms cancelled. Anyhow, it’s easy to believe that this last expression should
be the linear approximation of F ◦G near a. The first term is clearly the constant term, and
the second term therefore corresponds to the derivative of F ◦G at a.

Definition 8.3. A function f : Rn → R has a local maximum at a ∈ Rn if there exists
δ > 0 such that for all x ∈ B(a, δ), f is defined at x and f(x) ≤ f(a).

Definition 8.4. A point a ∈ Rn is critical for a scalar-valued funciton f : Rn → R if f is
differentiable at a and ∇f(a) = 0.

Proposition 8.5 (First derivative test). If a scalar-valued function f : Rn → R has a local
extremum at a ∈ Rn and f is differentiable at a, then a is a critical point for f .
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Sometimes one is interested in finding maxima and minima of a function not on all of Rn

but just along the level set of another function. For instance, instead of wondering where the
hottest place in the universe is, one might ask where the hottest place is on the surface of
the earth. So mathematically the question is to figure out where the temperature function
is maximal on a big sphere.

Definition 8.6. Let f, g : Rn → R be scalar-valued functions and c ∈ R be a number. We
say that f has a local maximum at a ∈ Rn subject to the constraint g = c if

• g(a) = c; and
• there exists δ > 0 such that f(x) ≤ f(a) for all x ∈ B(a, δ) such that g(x) = c.

The ‘method of Lagrange multipliers’ is a proceedure for finding constrained local maxima
and minima of differentiable functions.

Theorem 8.7 (First derivative test, with one constraint). Suppose that f, g : Rn → R are
scalar-valued functions and that f has a local maximum at a ∈ Rn subject to the constraint
g = c. If f and g are C1 at a, then the gradients ∇f(a) and ∇g(a) are parallel.

Shifrin presents a more general version of this theorem, involving multiple constraints (or
rather, a vector-valued constraint function g).
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9. Second order derivatives

Here I limit the discussion to scalar-valued functions.

Definition 9.1. A function f : Rn → R is C2 at a ∈ Rn if all second order partial
derivatives exist and are continuous at a ∈ Rn. If f is C2 at all points in its domain, then
we say simply that ‘f is C2.’

It is implicit in this definition that f is twice differentiable at points near a; otherwise it
wouldn’t make sense to say that second order partial derivatives are continuous at a. It is
also implicit that f and it’s first order partial derivatives exist and are continuous near a;
otherwise we couldn’t take second order partial derivatives.

The first main fact about second order partial derivatives is that the order of differentiation
is irrelevant.

Theorem 9.2. Suppose that f : Rn → R is C2 at a. Then for any indices 1 ≤ i, j ≤ n, we
have

∂2f

∂xi ∂xj
(a) =

∂2f

∂xj ∂xi
(a)

Definition 9.3. Suppose that f : Rn → R is C2 at a ∈ Rn. The Hessian of f at a is the

n× n matrix Hf(a) with ij-entry equal to ∂2f
∂xi ∂xj

(a).

The previous theorem says that Hf(a) is a symmetric matrix; i.e. it is equal to its own
transpose. The second main fact about second order partial derivatives is that they afford
extra control over the local behavior of a function.

Theorem 9.4. Suppose that f : Rn → R is C2 at a. Then

f(a + h) = f(a) +∇f(a) · h +
1

2
hTHf(a)h + E2(h),

where limh→0
E2(h)

‖h‖2 = 0.

The quadratic form associated to a symmetric n×n matrix A is the function Q : Rn → R
given by

Q(x) = xTAx.

Note that Q(cx) = c2Q(x) for any scalar c ∈ R.

Definition 9.5. Let A ∈ Mn×n be a symmetric square matrix and Q : Rn → R be the
associated quadratic form. We say that

• A is positive definite if Q(x) > 0 for all non-zero x ∈ Rn;
• A is negative definite if Q(x) < 0 for all non-zero x ∈ Rn;
• A is indefinite if there exist x,y ∈ Rn such that Q(x) < 0 < Q(y).

A symmetric matrix can satisfy at most one of these three conditions, but it’s hard to tell
just by looking which, if any, holds for a given matrix. For 2 × 2 matrices, there is a fairly
convenient condition one can apply.

Theorem 9.6. A 2× 2 symmetric matrix A =

[
a b
b c

]
is

• positive definite if and only if a > 0 and ac > b2;
• negative definite if and only if a < 0 and ac > b2;
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• indefinite if and only if ac < b2.

For larger square matrices, there are ways to check definiteness by computing eigenvalues
or by computing determinants of ’diagonal minors’. This requires more linear algebra than
I am assuming at present, so I do not discuss these things here.

Theorem 9.7 (Second derivative test). Suppose that f : Rn → R is C2 at some critical
point a ∈ Rn for f . Then f has

• a local minimum at a if Hf(a) is positive definite;
• a local maximum at a if Hf(a) is negative definite;
• neither a local maximum nor a local minimum if Hf(a) is indefinite.
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10. Topology of Rn

In one variable calculus, one can (mostly) limit attention to functions whose domains are
open or closed intervals in R. To do multivariable calculus one needs a more general notion
of open and closed. Roughly speaking, a closed set is one that contains its edge and an open
set is one that omits its edge.

Definition 10.1. Let X ⊂ Rn be a set. We say that a ∈ Rn is

• an interior point of X if there exists δ > 0 such that B(a, δ) ⊂ X;
• an exterior point of X if there exists δ > 0 such that B(a, δ) ∩X = ∅; and
• a boundary point of X if for any δ > 0, the ball B(a, δ) intersects both X and Rn\X.

Note that a is an exterior point of X if and only if a is an interior point of the complement
Rn \X; and a is a boundary point of X if and only if a is interior to neither X nor Rn \X.
In particular, boundary points of X coincide with boundary points of Rn \X, and any point
a ∈ Rn is exactly one of the three types (interior, exterior or boundary) relative to X.

Definition 10.2. A set X ⊂ Rn is

• open if every a ∈ X is an interior point of X;
• closed if every boundary point of X is contained in X.

Note that Rn is both open and closed. So is the empty set. A set {a} containing a single
point a ∈ Rn is closed but not open. A (non-empty) ball B(a, r) ⊂ Rn is open but not
closed.

It is more or less immediate from definitions that

Proposition 10.3. X ⊂ Rn is open if and only if the complement Rn \ X is closed, and
vice versa.

Open-ness and closed-ness interact well with other set operations.

Proposition 10.4. Both the union and intersection of finitely many open subsets of Rn are
open. Similarly, unions and intersections of finitely many closed subsets are closed.

Many other open and closed sets are furnished by the following useful result.

Proposition 10.5. Suppose f : Rn → R is continuous. Then for any c ∈ R, the ‘sub-level
set’

{f < c} := {x ∈ Rn : f(x) < c}
is open. So are the sets {f > c} and {f 6= c}. The sets {f ≤ c}, {f ≥ c} and {f = c} are
all closed.

Definition 10.6. A set X ⊂ Rn is bounded if there exists R > 0 such that X ⊂ B(0, R).

Definition 10.7. A subset of Rn is compact if it is closed and bounded.

Theorem 10.8 (Extreme Value Theorem). Suppose that f : Rn → R is continuous and
that K ⊂ Rn is a compact subset of the domain of f . Then there exist a,b ∈ K such that

f(a) ≤ f(x) ≤ f(b).

for all x ∈ K.


