
1. The Extreme Value Theorem

Let us first review some pertinent definitions and facts about subsets of R.

Definition 1.1. A set X ⊂ R of real numbers is bounded above if there exists M ∈ R such that x ≤ M
for any x ∈ X. We call M ∈ R an upper bound for X. Moreover,

• if M ∈ X, then we call M the maximum for X;
• if M ≤ M ′ for any other upper bound M ′ for X, then we call M the least upper bound (or supre-

mum) of X.

Upper bounds are never unique (if they exist at all), but least upper bounds and maxima are always
unique. The maximum for X is also the least upper bound for X, but the reverse is not always true. Indeed,
a bounded set (e.g. (0, 1)) need not admit a maximum, but the ‘completeness property’ of R says that such
a set X ⊂ R always has a least upper bound. We denote this quantity by supX. We then extend the
completeness axiom to empty and unbounded subsets of R with the conventions that sup ∅ = −∞ and that
supX =∞ if X is not bounded above.

We leave the reader to puzzle out the analogue of this discussion for lower bounds, greatest lower bounds
(infima), and minima of subsets of R.

Proposition 1.2. Let X1, . . . , Xk ⊂ R be a finite collection of sets and X = X1 ∪ · · · ∪Xk. Then

supX = max
1≤j≤k

supXj .

Theorem 1.3 (Extreme Value Theorem). Suppose that f : Rn → R is continuous and that K ⊂ Rn is a
compact subset of the domain of f . Then there exist p,q ∈ K such that

f(q) ≤ f(x) ≤ f(p)

for all x ∈ K.

Another way to state the conclusion is to say that the image

f(K) := {f(x) : x ∈ K}
of K by f has a maximum and minimum.

The proof requires a bit of notation. A cube in Rn is a product C = [a1, b1]×· · ·× [an, bn] ⊂ Rn of closed
intervals, all of the same length bj − aj . We call this length the side of C, and we call the point (a1, . . . , an)
(a bit misleadingly) the bottom vertex of C. Similarly, (b1, . . . , bn) is the top vertex. Note that cubes are
compact. Note further that by halving each of the intervals [aj , bj ], one can partition any cube C ⊂ Rn into
a union of 2n smaller cubes, each with side-lengths equal to half the side-length of C.

Proof. I will prove only the existence of p, since the argument for q is similar.
First I use the boundedness of K: there exists R > 0 such that K ⊂ B(0, R). So the cube C0 := [−R,R]n

contains K. Subdividing C into 2n cubes with side length half that of C, we can apply Proposition 1.2 to
choose one of these, call it C1, such that sup f(C1 ∩K) = sup f(K). Repeating this proceedure, we obtain
an infinite nested sequence

C0 ⊃ C1 ⊃ C2 ⊃ . . .
of cubes Cj such that

• sup f(Cj ∩K) = sup f(K); and
• the side length of Cj is 21−jR.

Now I use the completeness property of R.

Lemma 1.4. The intersection
⋂∞

j=0 Cj of all the cubes Cj contains exactly one point p ∈ Rn.

Proof. Since Cj ⊂ C0, we have that all coordinates of the bottom vertex of Cj are bounded above by R. Let
p = (p1, . . . , pn) ∈ Rn be the point whose ith coordinate is the least upper bound of all the ith coordinates
of all the bottom corners of cubes Cj .

Let ai, bi denote the ith coordinates of the bottom/top vertices of some particular cube CJ in our sequence.
Then certainly ai < bi. In fact, however, since the cubes are nested, bi is larger than the ith coordinate of
the bottom vertex of any other cube Cj , too. That is, bi is an upper bound for the ith coordinates of all the
bottom vertices. Since pi is the least upper bound, I see that ai ≤ pi ≤ bi. And since this is true for each
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coordinate i, I see that p ∈ CJ . Finally, since J ≥ 0 was arbitrary, I conclude that p ∈
⋂
Cj . That is, there

exists some point p in the intersection.
To see that there is a unique such point, suppose that q ∈

⋂
Cj is another. Then q ∈ Cj implies that

|qi − pi| ≤ 21−jR for all 1 ≤ i ≤ n. Letting j →∞, we see that p = q. That is, p is the only point that lies
in all the cubes. �

Next I use the closed-ness of K.

Lemma 1.5. p ∈ K.

Proof. If p is an interior point of K, then certainly p ∈ K. If p is a boundary point of K, then p ∈ K
because K is closed. So it suffices to show that p is not an exterior point of K.

Assume in order to get a contradiction that it is. Then there exists δ > 0 such that B(p, δ) ∩ K = ∅.
On the other hand, if j is large enough (specifically, 21−jR < δ/

√
n), the fact that p ∈ Cj implies that

Cj ⊂ B(p, δ). Since sup f(Cj ∩K) = sup f(K), we have in particular that K ∩Cj 6= ∅. So K ∩B(p, δ) 6= ∅.
That is, we have our contradiction. �

Finally, I use continuity of f . For any ε > 0 there exists δ > 0 such that ‖x− p‖ < δ implies |f(x)−f(p)| <
ε. In particular, f(x) < f(p) + ε for all x ∈ B(p, δ). Again taking j large enough, I have that Cj ⊂ B(p, δ).
Hence

f(p) ≤ sup f(K) = sup f(K ∩ Cj) ≤ f(p) + ε.

Letting ε→ 0 shows that sup f(K) = f(p). �
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