1. The Extreme Value Theorem

Let us first review some pertinent definitions and facts about subsets of \mathbf{R}.
Definition 1.1. A set $X \subset \mathbf{R}$ of real numbers is bounded above if there exists $M \in \mathbf{R}$ such that $x \leq M$ for any $x \in X$. We call $M \in \mathbf{R}$ an upper bound for X. Moreover,

- if $M \in X$, then we call M the maximum for X;
- if $M \leq M^{\prime}$ for any other upper bound M^{\prime} for X, then we call M the least upper bound (or supremum) of X.

Upper bounds are never unique (if they exist at all), but least upper bounds and maxima are always unique. The maximum for X is also the least upper bound for X, but the reverse is not always true. Indeed, a bounded set (e.g. $(0,1)$) need not admit a maximum, but the 'completeness property' of \mathbf{R} says that such a set $X \subset \mathbf{R}$ always has a least upper bound. We denote this quantity by $\sup X$. We then extend the completeness axiom to empty and unbounded subsets of \mathbf{R} with the conventions that $\sup \emptyset=-\infty$ and that $\sup X=\infty$ if X is not bounded above.

We leave the reader to puzzle out the analogue of this discussion for lower bounds, greatest lower bounds (infima), and minima of subsets of \mathbf{R}.

Proposition 1.2. Let $X_{1}, \ldots, X_{k} \subset \mathbf{R}$ be a finite collection of sets and $X=X_{1} \cup \cdots \cup X_{k}$. Then

$$
\sup X=\max _{1 \leq j \leq k} \sup X_{j}
$$

Theorem 1.3 (Extreme Value Theorem). Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is continuous and that $K \subset \mathbf{R}^{n}$ is a compact subset of the domain of f. Then there exist $\mathbf{p}, \mathbf{q} \in K$ such that

$$
f(\mathbf{q}) \leq f(\mathbf{x}) \leq f(\mathbf{p})
$$

for all $\mathbf{x} \in K$.
Another way to state the conclusion is to say that the image

$$
f(K):=\{f(\mathbf{x}): \mathbf{x} \in K\}
$$

of K by f has a maximum and minimum.
The proof requires a bit of notation. A cube in \mathbf{R}^{n} is a product $C=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbf{R}^{n}$ of closed intervals, all of the same length $b_{j}-a_{j}$. We call this length the side of C, and we call the point $\left(a_{1}, \ldots, a_{n}\right)$ (a bit misleadingly) the bottom vertex of C. Similarly, $\left(b_{1}, \ldots, b_{n}\right)$ is the top vertex. Note that cubes are compact. Note further that by halving each of the intervals $\left[a_{j}, b_{j}\right]$, one can partition any cube $C \subset \mathbf{R}^{n}$ into a union of 2^{n} smaller cubes, each with side-lengths equal to half the side-length of C.

Proof. I will prove only the existence of \mathbf{p}, since the argument for \mathbf{q} is similar.
First I use the boundedness of K : there exists $R>0$ such that $K \subset B(\mathbf{0}, R)$. So the cube $C_{0}:=[-R, R]^{n}$ contains K. Subdividing C into 2^{n} cubes with side length half that of C, we can apply Proposition 1.2 to choose one of these, call it C_{1}, such that $\sup f\left(C_{1} \cap K\right)=\sup f(K)$. Repeating this proceedure, we obtain an infinite nested sequence

$$
C_{0} \supset C_{1} \supset C_{2} \supset \ldots
$$

of cubes C_{j} such that

- $\sup f\left(C_{j} \cap K\right)=\sup f(K)$; and
- the side length of C_{j} is $2^{1-j} R$.

Now I use the completeness property of \mathbf{R}.
Lemma 1.4. The intersection $\bigcap_{j=0}^{\infty} C_{j}$ of all the cubes C_{j} contains exactly one point $\mathbf{p} \in \mathbf{R}^{n}$.
Proof. Since $C_{j} \subset C_{0}$, we have that all coordinates of the bottom vertex of C_{j} are bounded above by R. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbf{R}^{n}$ be the point whose i th coordinate is the least upper bound of all the i th coordinates of all the bottom corners of cubes C_{j}.

Let a_{i}, b_{i} denote the i th coordinates of the bottom/top vertices of some particular cube C_{J} in our sequence. Then certainly $a_{i}<b_{i}$. In fact, however, since the cubes are nested, b_{i} is larger than the i th coordinate of the bottom vertex of any other cube C_{j}, too. That is, b_{i} is an upper bound for the i th coordinates of all the bottom vertices. Since p_{i} is the least upper bound, I see that $a_{i} \leq p_{i} \leq b_{i}$. And since this is true for each
coordinate i, I see that $\mathbf{p} \in C_{J}$. Finally, since $J \geq 0$ was arbitrary, I conclude that $\mathbf{p} \in \bigcap C_{j}$. That is, there exists some point \mathbf{p} in the intersection.

To see that there is a unique such point, suppose that $\mathbf{q} \in \bigcap C_{j}$ is another. Then $\mathbf{q} \in C_{j}$ implies that $\left|q_{i}-p_{i}\right| \leq 2^{1-j} R$ for all $1 \leq i \leq n$. Letting $j \rightarrow \infty$, we see that $\mathbf{p}=\mathbf{q}$. That is, \mathbf{p} is the only point that lies in all the cubes.

Next I use the closed-ness of K.
Lemma 1.5. $\mathbf{p} \in K$.
Proof. If \mathbf{p} is an interior point of K, then certainly $\mathbf{p} \in K$. If \mathbf{p} is a boundary point of K, then $\mathbf{p} \in K$ because K is closed. So it suffices to show that \mathbf{p} is not an exterior point of K.

Assume in order to get a contradiction that it is. Then there exists $\delta>0$ such that $B(\mathbf{p}, \delta) \cap K=\emptyset$. On the other hand, if j is large enough (specifically, $2^{1-j} R<\delta / \sqrt{n}$), the fact that $\mathbf{p} \in C_{j}$ implies that $C_{j} \subset B(\mathbf{p}, \delta)$. Since $\sup f\left(C_{j} \cap K\right)=\sup f(K)$, we have in particular that $K \cap C_{j} \neq \emptyset$. So $K \cap B(\mathbf{p}, \delta) \neq \emptyset$. That is, we have our contradiction.

Finally, I use continuity of f. For any $\epsilon>0$ there exists $\delta>0$ such that $\|\mathbf{x}-\mathbf{p}\|<\delta$ implies $|f(\mathbf{x})-f(\mathbf{p})|<$ ϵ. In particular, $f(\mathbf{x})<f(\mathbf{p})+\epsilon$ for all $\mathbf{x} \in B(\mathbf{p}, \delta)$. Again taking j large enough, I have that $C_{j} \subset B(\mathbf{p}, \delta)$. Hence

$$
f(\mathbf{p}) \leq \sup f(K)=\sup f\left(K \cap C_{j}\right) \leq f(\mathbf{p})+\epsilon
$$

Letting $\epsilon \rightarrow 0$ shows that sup $f(K)=f(\mathbf{p})$.

