
1. Differentiability

Recall the definition of derivative from one variable calculus

Definition 1.1. We say that f : R→ R is differentiable at a point a ∈ R if the quantity

f ′(a) := lim
h→0

f(a+ h)− f(a)

h

exists. We then call f ′(a) the derivative of f at a.

One way to transfer this definition to higher dimensions is via ‘directional’ derivatives.

Definition 1.2. The directional derivative of a function F : Rn → Rm at a point a ∈ Rn

in the direction v ∈ Rn is the quantity (if it exists)

DvF (a) := lim
t→0

F (a + tv)− F (a)

t

When v = ej is a standard basis vector, we write ∂F
∂xj

(a) := DejF (a) and call this quantity

the partial derivative of F with respect to xj.

Another way of stating this definition is that DvF (a) = h′(0) where h : R → Rm is the
composite function

h(t) := F (a + tv)

obtained by restricting F to the line through a in the direction v. This way of formulating
directional derivatives is quite useful when you actually have to compute one!

A shortcoming of directional derivatives is that they don’t always do a very good job of
controlling the behavior of F near a given point a (see Section 3.1 e.g. 2 in Shifrin for a
good illustration of this). One needs a little bit more restrictive notion of derivative in order
to guarantee this sort of control.

Definition 1.3. We say that a function F : Rn → Rm is differentiable at a point a ∈ Rn

if there exists a linear transformation T : Rn → Rm such that

(1) lim
h→0

F (a + h)− F (a)− T h

‖h‖
= 0.

If such a T exists, then we call it the derivative of F at a write DF (a) := T .

So under this definition, the derivative DF (a) of F at a is not a number but rather a
linear transformation. This is not so strange if you remember any linear transformation
T : Rn → Rm has a standard matrix A ∈ Mm×n, so you can think of the derivative of F
at a more concretely as a matrix, i.e. as a collection of mn numbers that describe the way
all the different components of F = (F1, . . . , Fm) are changing in all the different directions
one can approach a. I’m sort of doing that already when I suppress parentheses in T (h) and
write Th instead.

In particular, if f : R→ R is just a scalar function of a single variable, then the number
f ′(a) above is just the lone entry in the 1×1 matrix for the linear transformation T : R→ R
given by T (h) = f ′(a)h.

Note that Equation (1) can be written in several slightly different but equivalent ways. For
instance, one could take the magnitude of the numerator and write instead (I’ll use DF (a)
in place of T now).

lim
h→0

‖F (a + h)− F (a)−DF (a)h‖
‖h‖

= 0.
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Or one could set x := a + h and rewrite the limit as

lim
x→a

F (x)− F (a)−DF (a)(x− a)

‖x− a‖
.

Another very useful way to restate (1) is to say that

(2) F (a + h) = F (a) +DF (a)h + E(h),

where the ‘error term’ E(h) satisfies limh→0
‖E(h)‖
‖h‖ = 0.

The first indication that our definition of differentiability will give us sufficient control of
F at nearby values of a is the following.

Theorem 1.4. If F : Rn → Rm is differentiable at a, then F is continuous at a.

Proof. From Equation (2) and continuity of linear transformations, I find that

lim
x→a

F (x) = lim
x→a

F (a) +DF (a)(x− a) + E(x− a) = F (a) +DF (a)0 + lim
x→a

E(x− a).

Moreover, since F is differentiable at a, I can dismiss the last limit as follows.

lim
x→a

E(x− a) = lim
x→a
‖x− a‖ E(x− a)

‖x− a‖
= lim

x→a
‖x− a‖ lim

x→a

E(x− a)

‖x− a‖
= 0 · 0.

Note that in the last equality, I use continuity of the magnitude function x→ ‖x‖. At any
rate, I conclude that

lim
x→a

F (x) = F (a),

i.e. F is continuous at a. �

The next fact about our new notion of derivative Df(a) is that it’s not that far from
partial and directional derivatives.

Theorem 1.5. Suppose that F : Rn → Rm is differentiable at a point a ∈ Rn. Then the
directional derivative of F at a in direction v ∈ Rn exists and is given by

(3) DvF (a) = DF (a)v.

In particular, the standard matrix for the linear transformation DF (a) : Rn → Rm is given
column-wise by

(4)
[
∂F
∂x1

(a) . . . ∂F
∂xn

(a)
]

Among other things, this theorem tells us that there is only one candidate for Df(a) and
gives us a practical means for finding out what it is (by taking partial derivatives). It does
not, however, tell us how to determine whether our candidate is a winner, i.e. whether F
is actually differentiable at a. For most purposes, the following condition suffices for that
purpose.

Proof. The main thing here is to justify the formula (3) for the directional derivative. This
formula implies in particular that

∂F

∂xj
(a) = DejF (a) = DF (a)ej.

So the expression (4) for the standard matrix of DF (a) proceeds immediately from this and
the fact that the jth column of the standard matrix of a linear transformation is obtained
by applying the transformation to the standard basis vector ej.
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To prove (3), I must show that

lim
t→0

F (a + tv)− F (a)

t
= DF (a)v

If v = 0, the two sides are clearly equal. Otherwise, I can use equation (2) to rewrite the
difference quotient on the left side as follows

F (a + tv)− F (a)

t
=
tDF (a)v + E(tv)

t
= DF (a)v +

E(tv)

t
.

So from here it suffices to show that limt→0
E(tv)
t

= 0. To this end, let ε > 0 be given.

Differentiability of F at a guarantees that there exists δ̃ > 0 such that ‖h‖ < δ̃ implies that
‖E(h)‖
‖h‖ < ε

‖v‖ . I therefore choose δ = δ̃
‖v‖ . If |t| < δ , then ‖tv‖ < δ̃. Hence∥∥∥∥E(tv)

t

∥∥∥∥ = ‖v‖
∥∥∥∥E(tv)

tv

∥∥∥∥ < ‖v‖ ε

‖v‖
= ε.

Hence limt→0
E(tv)
t

= 0. I conclude that DvF (a) = DF (a)v. �

Definition 1.6. A function F : Rn → Rm is said to be continuously differentiable at
a ∈ Rn, if all partial dervatives ∂F

∂xj
exist near and at a, and each is continuous at a. If

F is continuously differentiable at each point in its domain, then we say simply that ‘F is
continuously differentiable’ (or ‘C1’ for short).

Theorem 1.7. If F : Rn → Rm is C1, then F is differentiable at every point a in its
domain.

The following preliminary result reduces the proof of the theorem to the special case where
F = f : Rn → R is scalar-valued.

Lemma 1.8. Let F : Rn → Rm be a vector-valued function with component functions
F1, . . . , Fm : Rn → R. Then F is differentiable at a ∈ Rn if and only if each component
function Fj is differentiable at a. In this case, the standard matrix for DF (a) has jth row
equal to the standard matrix for DFj(a) (note that this is a 1×n matrix—i.e. a row vector).

Proof. Exercise: follows from the definition of differentiable and the fact (Proposition 6.7
in my glossary) finding the limit of a vector-valued function reduces to finding the limits of
each of its component functions. �

To restate the lemma a bit less formally, F is differentiable at exactly those points where
all its components are differentiable, and at each of these points the components of the
derivative of F are equal to the derivatives of the components of F .

I will also need to use the following signal fact from one variable calculus

Theorem 1.9 (Mean Value Theorem). If (a, b) ⊂ R is open and f : (a, b)→ R is differen-
tiable on (a, b) then for any two distinct points x, y ∈ (a, b), there exists a point c between x
and y such that

f(x)− f(y)

x− y
= f ′(c).

Now back to the program:
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Proof of Theorem 1.7. I will give the proof in the special case where F = f : R2 → R is
scalar-valued and depends on only two variables. The proof for scalar-valued functions of
n > 2 variables is similar and left as an exercise.

Theorem 1.5 tells me that there is only one candidate
[
∂f
∂x1

(a) ∂f
∂x2

(a)
]

for the standard

matrix for Df(a). So assuming that f is C1 at some point a = (a1, a2), I must show that

(5) lim
h→0

f(a + h)− f(a)−
(
∂f
∂x1

(a)h1 + ∂f
∂x2

(a)h2

)
‖h‖

= 0.

Being C1 at a means that f is at least defined near and at a (why?). That is, there exists
r > 0 such that f(x) is defined for all x ∈ Br(a). Moreover, given a point a = (a1, a2) ∈ R2,
and a displacement h = (h1, h2) ∈ R2 with ‖h‖ < r, I may rewrite the expression inside the
limit in equation (5) as follows.

f(a1 + h1, a2 + h2)− f(a1, a2)− ∂f
∂x1

(a1, a2)h1 − ∂f
∂x2

(a1, a2)h2

‖h‖

=
f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− ∂f

∂x1
(a1, a2)h1

‖h‖

+
f(a1, a2 + h2)− f(a1, a2)− ∂f

∂x2
(a1, a2)h2

‖h‖
.

So to establish (5) it suffices to show that each of the last two expressions have limit 0 as
h→ 0. I will show this for the first (i.e. second last) expression only, the argument for the
other expression being similar.

Given ε > 0, continuity of partial derivatives tells me that there exists δ > 0 such that
‖x− a‖ < δ implies that ∥∥∥∥ ∂f∂x1 (x)− ∂f

∂x1
(a)

∥∥∥∥ < ε.

Moreover, if I think of f as a function of only the first variable x1, then the one variable
mean value theorem tells me that

f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− ∂f
∂x1

(a1, a2)h1

‖h‖
=

(
∂f
∂x1

(a1 + h̃1, a2 + h2)− ∂f
∂x1

(a1, a2)
)
h1

‖h‖

for some number h̃1 between 0 and h1. In particular
∥∥∥(h̃1, h2)

∥∥∥ ≤ ‖h‖. So if ‖h‖ < δ, I can

estimate as follows∥∥∥f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− ∂f
∂x1

(a1, a2)h1

∥∥∥
‖h‖

=

∥∥∥∥ ∂f∂x1 (a1 + h̃1, a2 + h2)−
∂f

∂x1
(a1, a2)

∥∥∥∥ |h1|‖h‖ < ε · 1 = ε.

This proves that the left side converges to 0 as h→ 0, which is what I intended to show. �
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2. Differentiating composite functions

Theorem 2.1 (Chain Rule). Suppose that G : Rn → Rm is differentiable at a ∈ Rn

and F : Rm → R` is differentiable at G(a). Then the composition F ◦ G : Rn → R` is
differentiable at a and

D(F ◦G)(a) = DF (G(a)) ◦DG(a).

Proof. The composition DF (G(a)) ◦DG(a) of two linear maps is linear, so it suffices for me
to show that

lim
h→0

F (G(a + h))− F (G(a))−DF (G(a))DG(a)h

‖h‖
= 0.

Differentiability of F at G(a) implies that

F (G(a + h))− F (G(a)) = DF (G(a))(G(a + h)−G(a)) + EF (G(a + h)−G(a))

where limv→0
‖EF (v)‖
‖v‖ = 0. Hence the limit above can be rewritten

lim
h→0

DF (G(a))(G(a + h)−G(a)−DG(a)h))

‖h‖
+ lim

h→0

EF (G(a + h)−G(a)))

‖h‖

= DF (G(a))

(
lim
h→0

G(a + h)−G(a)−DG(a)h)

‖h‖

)
+ lim

h→0

EF (G(a + h)−G(a)))

‖h‖

= DF (G(a))0 + lim
h→0

EF (G(a + h)−G(a)))

‖h‖

= lim
h→0

EF (G(a + h)−G(a)))

‖h‖
.

The first equality holds because DF (G(a)) is linear and therefore continuous. The second
equality follows from the definition of differentiability.

For the remaining limit, I use the fact that

G(a + h)−G(a) = DG(a)h + EG(h).

where limh→0
EG(h)
‖h‖ = 0. In particular, there exists δ1 > 0 such that 0 < ‖h‖ < δ1 implies

‖EGh‖
‖h‖ < 1. Hence when ‖h‖ < δ1, I can employ the triangle and Cauchy-Schwarz inequality

to estimate

‖G(a + h)−G(a)‖ ≤ ‖DG(a)‖ ‖h‖ + ‖EG(h)‖ ≤ (‖DG(a)‖ + 1) ‖h‖ .

Given ε > 0, I can then choose δ2 > 0 such that 0 < ‖k‖ < δ2 implies that
‖EF (k)‖
‖k‖ <

ε
(‖DG(a)‖+1)

. So if 0 < ‖h‖ < δ := min{δ1, δ2
(‖DG(a)‖+1)

}, then

‖G(a + h)−G(a)‖ ≤ (‖DG(a)‖ + 1) ‖h‖ < δ2,

and therefore

‖EF (G(a + h)−G(a)))‖ < ε

(‖DG(a)‖ + 1)
‖G(a + h)−G(a)‖ ≤ ε(‖DG(a)‖ + 1) ‖h‖

(‖DG(a)‖ + 1)
= ε ‖h‖ .

In short, 0 < ‖h‖ < δ implies that

EF (G(a + h)−G(a)))

‖h‖
< ε.
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Hence

lim
h→0

EF (G(a + h)−G(a)))

‖h‖
= 0,

which is the thing it remained for me to show. �

3. Equality of mixed partial derivatives

First a cautionary tale.

Example 3.1. Let f(x1, x2) =
x21−x22
x21+x

2
2
. Observe that

lim
x1→0

lim
x2→0

f(x1, x2) = lim
x1→0

x21
x21

= 1.

However,

lim
x2→0

lim
x1→0

f(x1, x2) = lim
x2→0

−x22
x22

= −1.

The moral? One cannot generally switch the order in which one takes limits and expect to
get the same answer.

Definition 3.2. A function F : Rn → Rm is said to be C2 (or twice continuously differen-
tiable) if all first and second partial derivatives of f exist and are continuous at every point
a ∈ Rn that belongs to the domain of F .

Now that I’ve defined C1 and C2, you can probably imagine then what Ck means when
k > 2. The following theorem tells us that order is irrelevant when we take second (and
higher order) partial derivatives of a ‘decent’ function of several variables.

Theorem 3.3. Suppose that f : Rn → R is C2. Then for any 1 ≤ i, j ≤ n and any a ∈ Rn

in the domain of f , one has

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a).

My proof is quite similar to Shifrin’s, but (in my humble opinion) mine ends a little more
honestly. In any case, the main thing is to show that one can reverse the order of the two
limits involved in taking a second partial derivative.

Proof. To start with, note that since we are only considering derivatives of f with respect
to xi and xj, we might as well assume that these are the only variables on which f depends.
That is, it suffices to assume that n = 2 in the statement of the theorem, fix a point
a = (a1, a2) in the domain of f and show that

∂2f

∂x1∂x2
(a) =

∂2f

∂x2∂x1
(a).
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To this end, I go back to the definition of derivative, applying it to both partial derivatives:

∂2f

∂x1∂x2
(a) = lim

h1→0

∂f
∂x2

(a1 + h1, a2)− ∂f
∂x2

(a1, a2)

h1

= lim
h1→0

limh2→0

(
f(a1+h1,a2+h2)−f(a1+h1,a2)

h2

)
− limh2→0

(
f(a1,a2+h2)−f(a1,a2)

h2

)
h1

= lim
h1→0

lim
h2→0

f(a1 + h1, a2 + h2)− f(a1 + h1, a2)− f(a1, a2 + h2) + f(a1, a2)

h1h2

Let me (for brevity’s sake) call the quantity inside the last limit Q(h1, h2).
Unnecessary motivational digression: Similarly, when the partial derivatives are re-
versed, one finds:

∂2f

∂x2∂x1
(a) = lim

h2→0
lim
h1→0

Q(h1, h2)

That is, we get the same thing as before, except that the order of the limits is reversed. If
we could switch the limits, we’d be home-free. But without justification, we can’t. Instead we
take a less direct but more justifiable approach that relies on the mean value theorem.

Lemma 3.4. For each h = (h1, h2) ∈ R2, there exists h̃ = (h̃1, h̃2) inside the rectangle
determined by h and 0 such that

Q(h) =
∂2f

∂x2∂x1
(a+ h̃)

Proof. Note (i.e. really—check it!) that we can rewrite

Q(h1, h2) =
1

h2

g(a1 + h1)− g(a1)

h1

where g : R→ R is given by g(t) := f(t, a2 +h2)−f(t, a2). In particular g is a differentiable
function of one variable with derivative given by g′(t) = ∂f

∂x1
(t, a2 + h2)− ∂f

∂x1
(t, a2). So I can

apply the mean value theorem, obtaining a number h̃1 between 0 and h1 such that

Q(h1, h2) =
1

h2

(
g(a1 + h1)− g(a1)

h1

)
=

1

h2
g′(a1+h̃1) =

1

h2

(
∂f

∂x1
(a1 + h̃1, a2 + h2)−

∂f

∂x1
(a1 + h̃1, a2)

)
.

Applying the Mean Value Theorem a second time, to this last expression, gives me a number
h̃2 between 0 and h2 such that

Q(h1, h2) =
∂2f

∂x2∂x1
(a1 + h̃1, a2 + h̃2)

�

To finish the proof of the theorem, I will use the convenient notation A ≈ε B to mean that
A,B ∈ R satisfy |A− B| < ε. Note that (by the triangle inequality) we have ‘approximate
transitivity’—i.e. A ≈ε1 B and B ≈ε2 C implies A ≈ε1+ε2 C.

It will suffice to show that

∂2f

∂x1∂x2
(a) ≈ε

∂2f

∂x2∂x1
(a)
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for every ε > 0. So let ε > 0 be given. By continuity of second partial derivatives, there
exists δ > 0 such that ‖h‖ < δ implies that∣∣∣∣ ∂2f

∂x2∂x1
(a+ h)− ∂2f

∂x2∂x1
(a)

∣∣∣∣ < 1

3
ε.

Using the definition of limit twice and then the above lemma, I therefore obtain that when
h1 and then h2 are small enough,

∂2f

∂x1∂x2
(a) = lim

h1→0
lim
h2→0

Q(h1, h2) ≈ε/3 lim
h2→0

Q(h1, h2) ≈ε/3 Q(h1, h2) =
∂2f

∂x2∂x1
(a+h̃) ≈ε/3

∂2f

∂x2∂x1
(a).

In short,
∂2f

∂x1∂x2
(a) ≈ε

∂2f

∂x2∂x1
(a),

which is what I sought to show. �


