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Abstract

Following are some bare-bones course notes for Math 20630 at Notre Dame. These
are not intended to replace a textbook as they include little informal discussion, few
examples, and no exercises. Rather, they are intended to bridge the gap between a
textbook and my lectures. Despite the skeletal nature of the work, I'd like to see it
improved and would welcome any comments and suggestions to that end.



1 Integer Arithmetic
We begin with the integers, i.e. the numbers
o, —2,—1,0,1,2, ...

that you get by starting with zero and proceeding forward or backward in increments of one.
We use the boldface letter Z to denote the set of all integers. Arithmetic with integers is
something you’ve been familiar with for years. It’s as likely as not that you can’t remember
not knowing how to add or multiply two integers together. Nevertheless, since you learned
these things at an early age, you might never have given them much further thought. We do
this now. All the facts about multiplication and division of integers proceed from eight basic
rules, which in higher mathspeak are known as the (brace yourself) azioms for a commutative
ring with unit. We'll just call them the azioms for arithmetic.
Concerning addition we have four axioms.

A1l (Commutative law for addition) for all z,y € Z, x +y = y + =.
A2 (Associative law for addition) for all x,y,2 € Z, (x +y) + 2z =z + (y + 2).

A3 (Existence of an additive identity) there is an element 0 € Z such that for all z € Z,
r+0=ux.

A4 (Existence of additive inverses) for each x € Z there is an element —z € Z such that
x+ (—z) =0.

And for multiplication we have three axioms, analogous to the first three for addition.
M1 (Commutative law for multiplication) for all x,y € Z, x -y =y - .
M2 (Associative law for multiplication) for all z,y,z € Z, (z-y) -z =x - (y - 2).

M3 (Existence of a multiplicative identity) there exists an element 1 € Z different from 0
and such that forallz € Z, - 1 = x.

There is a single axiom that relates multiplication and addition.
D (Distributive Law) For all z,y,2 € Z, v - (y+ 2) =z -y + - 2.

And finally, there is an axiom guaraneteeing that the integers consist of more than just the
number 0.

N (Non-triviality) 0 # 1.

Of course, there are lots of familiar facts about arithmetic that didn’t make it into the
list above. We'll get to those shortly. Before proceeding, though, we comment about another
omission you might have noticed: subtraction and division are absent from the above list.
Subtraction isn’t mentioned because it’s not really an independent operation. When we



write ‘a — b, it’s really just shorthand for ‘a + (—b)’ (see A4 above). Hence from a logical
point of view, there’s no need for a separate discussion of subtraction. Division is a more
complicated thing, since properly speaking division isn’t an operation at all when it comes
to integers. Nevertheless, we’ll spend much time discussing division later. For now, we skip
this thorny issue.

Other facts about arithmetic needn’t be stated as axioms. Rather, they can be deduced
logically from the axioms given above. Here, we present two examples of this, leaving several
others to you as exercises.

Proposition 1.1 For every x € Z, we have 0-x =x -0 = 0.
Proof. Let © € Z be given. Then

z-0+2-0 = z-(0+0) (by AM)
x-0 (by A3).

By axiom A4 there is an additive inverse —(x - 0) for x - 0. Using this inverse, we resume
where we left off.

z-04+2-0 = z-0
= (z-04+2-0)+—(2-0) = -0+ —(x-0) (because addition is well-defined)
= -0+ (x-0+—(x-0) = z-0+—(x-0) (by A2)
= z-0+0 = 0 (by A4)
= 20 = 0 (by A3)
= O-z = 0 (by A1)
Sox-0=0-2 =0, as claimed. O

The next proposition requires a definition.

Definition 1.2 We say that y € Z is an additive idenitity if for all integers x € Z, we have
rT+y==z.

Observe that by axiom A3, the integer 0 is an additive identity. However, the axiom
doesn’t preclude the possibility that there might be some other additive identity in Z. After
all, if a number can have two square roots, or a person can have three children...

Proposition 1.3 The additive identity in Z is unique.

Proof. Suppose that y, z € Z are both additive identities. Then on the one hand
yt+z=y,

because that’s what it means for z to be an additive identity. On the other hand,

y+z = z+y (Al).
= z (because y is an additive identity).
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Comparing the results of our two computations, we conclude that y = z. Thus there is only
one additive idenitity in Z. O

Here are some other facts that can be deduced from the ring axioms. Note that once you
prove a fact it can then be used to help prove other facts.

Proposition 1.4 The following statements are true (for any integers x,y,z € Z).
1. Ifr+2z=y+ 2z thenz =y.
The additive inverse of x is unique.

The multiplicative identity is unique.

(—2)y = —(zy).
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(—2)(=y) = zy.

Note that proving the second and third items requires you to have definitions for additive
wnverse and multiplicative idenitity



2 Order in the Integers

Besides adding and multiplying integers, one can also compare them with each other, saying
which is larger and which is smaller. For instance 0 < 1, but —1 < 0. Such comparison is
called an ‘order relation.” As with arithmetic, it turns out that all the various facts about
order on the integers boil down to a few fundamental rules. These are the following

O1 (Trichotomy) For any z,y € Z, exactly one of the following is true: = < y, y < z, or
Y=

02 (Transitivity) For any z,y, z € Z, the relations = < y and y < z imply that x < z.

03 (Compatibility with addition) For any z,y,z € Z, the relation x < y implies that
r+z<y+z

04 (Compatibility with multiplication) For any z,y € Z, 0 < x and 0 < y imply that
0 < ay.

The following propostion sums up some important consequences of these axioms
Proposition 2.1 For any z,y, z € Z, the following are true.
1. 0 < x wmplies that —x < 0 and x < 0 implies that 0 < —x.
0 <,y imply that 0 < x4+ y.
0 <z andy <0 imply that xy < 0.
x <0 andy <0 imply that 0 < zy.
0<1.
x <y and 0 < z implies that xz < yz.

xy = 0 implies that either x =0 ory = 0.

o RS v e

xz =1yz and z # 0 imply that x = y.

Somewhat remarkably, the last two conclusions in this proposition do not even refer to order
directly. However, one must rely on the trichotomy axiom for order to prove them! As
before, we will not prove all these consequences of the axioms. Rather let us make examples
of a couple of them, leaving you the reader the pleasure of proving the rest.

Proof. We prove items 3 and 5, in each case assuming that the preceding items have all been
shown to be true.



Let y <0 and 0 < . Then

y <0 (assumption)
= 0 < —y (item 1)
= 0 < (—y= (O4 and assumption on )
= 0 < —(yo) (item 4 in Proposition 1.4)
= yr < 0 (item 1 again)
= oy < 0 (M1)

This proves item 3.

To prove item 5, we apply the trichotomy axiom: either 0 < 1, 1 < 0 or 1 = 0. The last
possibility is ruled out by the addendum to axiom M3 for arithmetic.

Now assume that 1 < 0. If this is so, then item 4 tells us that 0 < 1-1. But 1-1 =1 by
M3. Hence 0 < 1, contradicting our assumption. The only remaining possibility is 0 < 1,
which is what we wanted to prove. O

The proof of item 5 is an example of proof by contradiction. The idea is that we look at
want we want to prove, assume the opposite of this is true instead, and then reason ourselves
into a logical pickle, all for the sake of concluding that the thing we want to be true really
is true. It’s sort of like following the driving directions your friend suggests and getting
hopelessly lost just to make clear that the directions stink. Needless to say, in ordinary
social situations outside of math, proofs by contradiction should be employed with a certain
tact and sensitivity.

Thus far we have carefully phrased all our statements concerning order so that only the
symbols ‘<’ and ‘=" are used, avoiding things like ‘> and ‘<’. However, there is no harm
in using these latter symbols if one remembers that things can always be translated back to
< and =—for instance, that ‘z >= y’ is shorthand for ‘y < z or y = ’.



3 The Well-Ordering Principle

Up until now, we have done nothing with integers that we couldn’t also have done with
rational numbers or real numbers. Indeed, if you think about it, you could go back through
the previous sections, substituting ‘real number’ for ‘integer’, and all the arguments would
be as true as they were before. This is because real numbers also satisfy the axioms given for
arithmetic and order. Hence any fact deduced solely from those axioms will be a fact about
real numbers just as surely as it is a fact about integers. What we need now is a new axiom,
one that will separate the integers from all other kinds of numbers. To state this axiom, we
need to single out an important subset of the integers.

Definition 3.1 A natural number is any integer larger than or equal to zero. The set of all
natural numbers is denoted N.

Note specifically, that we count 0 among the natural numbers. If we want to refer to the
set of all positive integers, we will write ‘Z*’. The axiom that distinguishes integers from
other sorts of numbers is

The Well-Ordering Principle. Any non-empty subset of the natural numbers has a small-
est element.

One can perhaps see more clearly how the well-ordering principle distinguishes integers
from rational and real numbers from one of its consequences.

Proposition 3.2 There is non € Z such that 0 <n < 1.

Equivalently, one can say that 1 is the smallest positive integer.
Proof. Assume, in order to obtain a contradiction, that such an integer exists. Then the set
S:={ne€Z:0<n<1}isanon-empty set of natural numbers. Hence there is a smallest
element of S, which we denote m. But since m > 0, we can multiplying the inequalities
0 < m and m < 1 by m to obtain 0 < m? and m? < m. From the transitivity axiom 02,
we infer m? < 1 and thus see that m? is an element of S smaller than m. This contradicts
the fact that m is the smallest element and belies our initial assumption. Hence there is no
integer between 0 and 1. U

By contrast there are many rational and real numbers between 0 and 1, and in fact, if
one changes the definition of S in the previous proof to include. say, all rational numbers
between 0 and 1, then S is very far from non-empty (e.g. 1/2 € §) and the argument of
the proof shows that S has no smallest element. Hence subsets of the non-negative rational
(and similarly real) numbers need not have smallest elements.

In order to give further applications of the well-ordering principle, we make a couple of
further definitions.

Definition 3.3 Given a,b € Z, we say that b divides a if there is a third integer ¢ such that
a = be. Alternatively, we say that b is a factor of a or a is a multiple of b. In any case, we
will write bla’ to indicate that b divides a.



So for instance 4|12 but 4 f15. Observe that for any integer n, we have that both 1 and
n divide n simply because n = 1-n. We will say that a factor of n is non-trivial if it is not
equal to 1 or n.

Proposition 3.4 If a > 0, b > 1 are integers and a is a non-trivial factor of b, then
1 <a<hb.

Proof. By assumption, we have ac = b for some ¢ € Z. Neither a nor c is 0, since this would
imply b = 0. Thus a > 0 and therefore also ¢ > 0, since a is a natural number and b = ac
is positive. Indeed from Proposition 3.2 and a # 0 we see that ¢ > 1 and a > 1. Thus
b=ac>a-1=a. Since b # a, we conclude that a < b, as asserted. O

Definition 3.5 A factorization of a non-zero integer b € Z is a collection ay,...,ar € Z
such thatb=ay ...ay.

So for instance 4 - 4 - 2 is a factorization of 32; asis 2-2-2 -4, or for that matter 32 - 1.

Definition 3.6 An integer p > 1 is called prime if p and 1 are the only natural numbers
that divide p.

Note that we will call a factorization of a positive integer n prime if all factors included
are prime numbers. Our next direct use of the well-ordering principle will be

Theorem 3.7 Let n > 1 be an integer. Then n admits a prime factorization, and in
particular n has at least one prime factor.

Proof. Assume the theorem fails. Then the set S of integers larger than 1 that do not admit
prime factorizations is non-empty. By the well-ordering principle, it has a smallest element
n. Note that n is not prime, since then n admits the prime factorization n = n. Hence
n has a non-trivial factor m. That is, n = mk for some other non-trivial factor £ € N.
From Proposition 3.4, we infer 1 < m, k < n. In particular, since n is the smallest beyond 1
without a prime factorization, we infer that there are prime numbers p;...p; and q1,...¢;
such that m = p;...p; and k = q;...¢;. It follows that n admits the prime factorization
n = Pi...Piq ---q;, which contradicts the fact that no such factorization exists. It follows
that the set S is non-empty and the theorem is true. U

Changing direction somewhat, we give another application of the well-ordering principle.
We pointed out earlier that there is no operation of ‘division’ for integers, since x/y need not
be an integer even if x and y are. However, as the next result indicates, there is a substitute
for division: ‘division with remainder’. It is the first result we have encountered that really
deserves the title ‘theorem’, and we will use it frequently.

Theorem 3.8 (The Division Algorithm) Given integers a > 0 and b > 0, there exist
unique integers q,r € N with the following properties



e a=>bqg+r.

e < r<b-—1.

For example, taking a = 15 and b = 4, as above, we have 15 = 3 -4 + 3. The name
‘Division Algorithm’ is a little misleading, since it does not actually tell one how to find the
quotient ¢ and remainder r in the conclusion. However, the name is pretty well entrenched
in the mathematical literature, so we will continue to use it. Note also that Theorem 3.8
remains true if we assume only that a and b are integers such that b # 0. That is, one or
both of a and b can be negative. Because the proof is cleaner, we content ourselves with the
version given here.

Proof. We first prove that integers r and g with the desired properties exist. Let !

S={teN:t=a—bs for some s € Z}.

Note that S is non-empty because e.g. t = a —b-0 = a is an element of S. By the well-
ordering principle then, S has a smallest element » € N. Since r € S, we have r = a — bq for
some q € Z. That is, a = bg + r. Moreover, because r = a — bq is the smallest element of S,
it follows that r —b =a — b(g + 1) is not in S. Hence r — b < 0. Since r € N, we conclude
that 0 < r < b. This concludes the existence portion of the proof.

Now we prove that r and ¢ are unique. Suppose that r’, ¢’ is another pair of integers
satisfying the two conclusions of the theorem. Let us say for argument’s sake that " > r.
Then we have

bg+r = bg +1r
=0(¢d—q) = r—r

That is, » — 7’ is an integer multiple of b. On the other hand, since 0 < ' < r < b, it follows
that 0 < r — 7’ < b— 1. The only integer multiple of b between 0 and b — 1 is 0, so it must
be that » = r’. Since b # 0, it follows that ¢ = ¢/, too. Hence ¢ and r are unique. O

We conclude this section with a small but useful observation. The well-ordering principle
can be restated in a more flexible fashion using the following terminology.

Definition 3.9 A number m € Z is said to be a lower bound for a set S C Z if m < x for
all x € S. If such an m exists, then S is said to be bounded below. Likewise, M € Z is an
upper bound for S if M > x for every x € S, and if such an M ezists, then S is said to be
bounded above.

Proposition 3.10 IfS C Z is non-empty and bounded below then it has a smallest element.
If S is non-empty and bounded above, then it has a largest element.

You should stop and think about the definition of S til you understand what it’s saying—it helps to
work out a specific example with specific values for a and b.



The well-ordering principle is a special case of this statement because any set of natural
numbers is bounded below by 0.
Proof. Suppose that S C Z is non-empty and bounded below by an integer m. Then
x —m > 0 for every x € S. Hence the set

T={x—mecZ:zeS}

is a non-empty set of natural numbers and therefore has a smallest element ¢y. It follows
that there is an element x5 € S such that tg = 2o — m.

Moreover, if x € S is any other element, then x —m € T, so tg = o —m < x —m. Hence
ro < x. Since x € S was arbitrary, we conclude that x( is the smallest element of S.

The case where S is bounded above is similar and left as an exercise. O



4 Base b expansions of integers

Definition 4.1 Let b > 2 and n > 1 be natural numbers. A base b expansion (or b-ary
expansion forn is a an expression

didy_1 . . . didy
where the digits d;, j =0,...,k, are integers satisfying
e 0<d; <b—-1;
o dp #0;
o n = E?:o d;b;

We extend the notion of b-ary expansions to non-positive integers as follows. The integer
0 is its own b-ary expansion, and the b-ary expansion of a negative integer n is a b-ary
expansion for |n| with a minus sign in front of it.

Theorem 4.2 Given integers b > 2 and n, there is a unique b-ary expansion for n.

Proof. We assume without loss of generality that n > 1. First we address the existence of a
b-ary expansion, letting

S ={n € Z" : n does not have a b-ary expansion}.

Assume in order to reach a contradiction that S is not empty. Then by the well-ordering
principle S has a smallest element m. Observe that m # 1,...,b—1 since these numbers will
be their own b-ary expansions and will therefore not be elements of S. Using the division
algorithm, we are able to write

m=>bq+r

where ¢ > 1 and r are as in the conclusion of Theorem 3.8. Since b > 2 and r > 0, it follows
that
m > bqg > q.

Hence ¢ is an element of Z™ not belonging to S and must have a b-ary expansion:
q = dkdk—l e do.
Thus
k
m =0 d;t/ +r=db"" +dp b+ -+ dob+ 7.

§=0
But since 0 < r < b — 1, this means that dpds_1...dyr is a b-ary expansion for m, contra-

dicting the assumption that m € S. It follows that S is empty: every positive integer has a
b-ary expansion.
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Now we address the issue of uniqueness. Suppose, in order to obtain a contradiction
again, that there is a number n € N with two different b-ary expansions. That is 2,

b+ dib+dy =n=db + -+ dib+d), (1)

where d; # d; for at least one j. Let j = ¢ be the smallest index where the digits differ; say
for argument’s sake that dy > d;. Then d; = dj for j < {, so the last £ terms on the left side
of (1) cancel the last ¢ terms on the left, giving us

dpb® 4 dbt = b 4 d
From this, we can cancel a common factor of b’ and isolate the fth terms.
dy = dj = (df, — AV~ + -+ (dy — )b

Since 0 < d; < dy < b — 1, the left side is between 1 and b — 1. On the other hand, b
divides the right side. Since b cannot divide numbers between 1 and b — 1, we have reached
a contradiction. We conclude that the b-ary expansion of n is unique. O

2 Actually, the two expansions might have different numbers of digits, but if this is the case we add leading
zeroes to the shorter expansion so that both have the same number of digits. Technically, this violates the
second condition in Definition 4.1, but it does not affect the validity of the present argument.
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5 Divisibility

In order to present an example in the previous section, we introduced the notion of divisibility.
In this section, we make a thorough study of divisibility. First we collect some basic results.

Proposition 5.1 Let a,b,c € Z be given.
1. If a|b and b|c, then alc.
2. If b# 0 and alb, then |a| < |b].

3. If alb and bla, then b = +a.

Proof. We prove only the first item here, leaving proofs of the remaining items as exercises. If
a|b and b|c, then by definition, there are integers k, ¢ such that ak = b and b¢ = c¢. Therefore
a(kl) = ¢, which means that alc. O

Definition 5.2 Let a,b € Z be integers, at least one of which is not 0. The greatest common
divisor ged(a, b) of a and b is the largest natural number n such that nla and nlb.

The first thing to point out about greatest common divisors is that they exist. The set of
all natural numbers dividing both a and b is non-empty because it contains, for instance, the
number 1. It is also bounded above: if, for instance, a # 0 then conclusion 2 in Proposition
5.1 tells us that a number dividing a cannot be larger than |a|. Hence by Proposition 3.10,
there is a largest natural number dividing both a and b.

The significance of the next definition and might seem a little mysterious if you’ve never
seen it before, but it’s really very important.

Definition 5.3 An integer combination of two numbers a,b € Z is an integer of the form
ma + nb, where m,n are also integers.

For example, 2 is an integer combination of 3 and 5, because 4 - 3 + (—2) - 5 = 2. Here
are a couple of basic but quite useful observations about integer combinations.

Proposition 5.4 For any a,b,c,d € Z, the following are true.

1. If cla and c|b, then ¢ divides every integer combination of a and b.

2. If ¢ and d are integer combinations of a and b, then every integer combination of ¢ and
d is also an integer combination of a and b.

Proof. 1f c|la and ¢|b, then a = a’c and b = b'c for some ',V € Z. Therefore, if k = ma + nb
is an integer combination of a and b, we have

k=m(d'c)+n(c)=c(ma + nb).
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Thus ¢ divides k, and the first conclusion is proved.
If ¢ = ma+ nb and d = ra + sb are integer combinations of @ and b and k = ic+ jd is an
integer combination of ¢ and d, then

k = i(ma+ nb) + j(ra + sb) = (im + jr)a + (in + js)b.

Thus k£ is also an integer combination of a and b, and the second conclusion is proved. [

Later on, we’ll encounter what’s traditionally called the fundamental theorem of arith-
metic, but if tradition hadn’t already spoken for the name, I'’d want to apply it to the next
result.

Theorem 5.5 Let a and b be integers not both equal to 0. Then ged(a,b) is an integer
combination of a and b.

Proof. Let
S ={k € Z"':kis and integer combination of a and b}

Since at least one of the two integers a and b is non-zero, we have a-a +b-b = a® +b*> > 1.
Therefore a® 4+ b* € S, and our set is non-empty. By the well-ordering principle, S has a
smallest element g > 1. By definition of S, g = ma + nb for some m,n € Z. I claim that
g = gecd(a, b).

To see that my claim is true, note that since ¢ is an integer combination of a and b, and
since ged(a,b) divides both a and b, conclusion 1 of Proposition 5.4 implies that ged(a, b)
divides g. In particular, conclusion 2 of Proposition 5.1 tells us that ged(a,b) < g.

It remains to show that ¢ < ged(a,b). Since ged(a, b) is the largest common factor of
a and b, it will suffice just to show that g|a and g|b. Taking a, for example, we apply the
division algorithm to write

a=g-q+r

where 0 <r < g. Now r =a-14 (—q)- ¢ is an integer combination of a and g, so conclusion
2 of Proposition 5.4 implies that r is an integer combination of @ and b. On the other hand,
g is supposed to be the smallest positive integer combination of a and b. It follows that
r = 0. Thus a = g - ¢ and we see that g|a.

The same argument shows that g|b. Thus g < ged(a,b), as desired. Combining our
inequalities, we conclude that g = ged(a, b). O

Corollary 5.6 Ifa,b € Z are not both zero and ¢ € Z divides both a and b, then c| ged(a, b).

Proof. By Theorem 5.5, ged(a, b) is an integer combination of a and b. Thus by conclusion
1 of Proposition 5.4, ¢| ged(a, b). O

Definition 5.7 Two non-zero integers a and b are relatively prime if ged(a,b) = 1.

Corollary 5.8 If a, b, and c are integers, such that a and b are relatively prime and albc,
then alc.

13



Proof. Since albe, we have k € Z such that be = ak. Since ged(a,b) = 1, we have from
Theorem 5.5 that
1 = ma + nb

for some m,n € Z. Thus
¢ = mac + nbc = mac + nak = a(mc + nk).

Hence alc. O

Corollary 5.9 Ifa,b € Z are not both zero, then a/ ged(a,b) and b/ ged(a, b) are relatively
prime integers.

Proof. Since ged(a, b) divides both a and b, there exist o', € Z such that a = a’ ged(a, b)
and b = V' ged(a,b). By Theorem 5.5, there also exist m,n € Z such that

ged(a, b) = ma + nb.
Cancelling out the common factor of ged(a, b) from the three terms in this equation, we find
1 =ma +nb.

Hence by conclusion 2 of Proposition 5.4, any common factor of @’ and ¥ must also divide 1.
It follows then from conclusion 2 of Proposition 5.1 that the only positive integer dividing
a’ and V' is 1 itself. That is, a’ = a/ ged(a,b) and b’ = b/ ged(a, b) are relatively prime. O

Now let us return to consider prime numbers again. The first result is a relatively
straightforward consequence of Corollary 5.8.

Corollary 5.10 If a,b,c are integers such that a is prime and albc, then alb or alc.

Proof. Exercise. O

Remark 5.11 The previous corollary extends to products of more than two integers. That
18,

if a is prime and aln; - - - - ng, then a must divide one of the n;.

To see that this is so, note that by the previous corollary a|ny or al(ng----- ng). In the latter
case, alny oral(ng----- ng. Continuing in this fashion, we eventually find that a|ny or a|ng
or alng or ... or a|ny.

Theorem 5.12 (Fundamental Theorem of Arithmetic) Every integer n > 2 has a
prime factorization, and this factorization is unique up to order.
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The phrase ‘unique up to order’ means, for example, that 2 - 3 is the only prime factor-
ization of 6, as long as you count this to be the same as 3 - 2.
Proof. Theorem 3.7 already tells us that n has at least one prime factorization. So here we
need to show that there isn’t a second one. Suppose in order to reach a contradiction that
n has two different prime factorizations

By cancelling out terms that appear on both sides, we can assume that p; # ¢; for any 1, j.
However, the above equation implies that py|q; - - - qe- So from Corollary 5.10, we see that
p1lg; for some j. Since p; and ¢; are both prime, it follows that p; = ¢;. This contradicts
the fact that p; is different from all the ¢;’s. Hence n does not have two different prime
factorizations. We conclude that prime factorizations are unique. 0

The next theorem is due to Euclid and is an amazing instance of the power of ‘proof by
contradiction’.

Theorem 5.13 There are infinitely many prime numbers

Proof. Suppose to the contrary that there are finitely many prime numbers py, ..., py. Con-
sider the number

Since n > 1, there exists a prime number p which divides n. By our initial assumption p = p;
for some j. However, from the previous equation, it’s clear that

n=p;-q+1,

where ¢ is the product of all the prime numbers besides p;. So on the one hand, n is evenly
divisible by p;, but on the other hand dividing n by p; leaves remainder 1. This is impossible.
We conclude that there are infinitely many prime numbers. 0
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6 Sets and relations

A set, which is nothing more than a collection of objects, is one of the most basic notions in
mathematics. The objects belonging to the set are called its elements. We write ‘xz € A’ to
indicate that x is an element of A.

The most basic of all sets is the empty set (). That is, () is the unique set which contains
no elements. The following definition presents a variety of other basic terminology connected
with sets.

Definition 6.1 Let A and B be sets.
e The union of A and B 1is the set

AUB:={zx:x€ A orz € B}.

e The intersection of A and B 1is the set

ANB:={z:z€ A and x € B}.

o The difference between A and B 1is the set

A-—B:={re€A:x ¢ B}.

e B is a subset of A if every element of B is also an element of A. When B is a subset
of A, we call A— B the complement of B in A, and when the set A can be understood
from context, we write B for A — B.

o We say that A is a subset of B if for every x € A, we also have x € B. In this case,
we write A C B.

o We say that A= B if AC B and B C A.
e We say that A and B are disjoint if AN B = ().

Many assertions in mathematics boil down to statements about the relationship between
two sets. For instance, the assertion the solutions of x> = 1 are 1 and —1 can be rephrased
as an equality between two sets

{reR:2* =1} ={-1,1}.

Proving that two sets are equal, or that one is a subset of another is therefore an important
skill. Fortunately, it’s not a difficult one as long as you remember what you're up to. Let us
give an example here.

Proposition 6.2 For any sets A, B, C', we have
AN(BUC)=(ANnB)U(ANCOC).
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Before beginning, we point out the basic strategy. By definition, showing two sets are
equal means showing that one is a subset of the other and vice versa. And to show that one
set is a subset of another, we must show that any element in the first is an element of the
second.

Proof. To show that the left set is a subset of the right, let x € AN (BUC) be given. Then
on the one hand z € A, and on the other hand z € Bor xz € C. If x € B, then it follows that
x € AN B. Likewise, if z € C, then it follows that x € ANC. Hence x € (ANB)U(ANC).
This proves

AN(BUC)C(ANB)U(ANC).

To show the right set is a subset of the left set, let z € (AN B)U(ANC) be given. Then
eitherz € ANBorxz e ANC. If x € ANB, then x € A and x € B, so certainly z € BUC,
too. Hence z € AN (BUC). If, on the other hand, x € AN C, then we similarly see that
x € AN (BUC). So in either case, we see that z € AN (B UC). This proves

(ANB)U(ANC)Cc An(BUCQ).
Putting the results together, we conclude that
AN(BUC)=(ANnB)U(ANCOC).
O
There is one other way to combine two sets. In some sense, it’s the largest possible way
to combine two sets.
Definition 6.3 The cartesion product of two sets A and B is the set
Ax B:={(a,b):a€ Abe B}

comprising all ordered pairs whose first element lies in A and whose second element lies in
B.

So if A is the set of all U.S. presidents and B is the set of all species of trees, then
(Woodrow Wilson, weeping willow) is an example of an element of A x B. Any kind of
‘connection’ between the elements of A set with the elements of B can be described as a
subset of A x B.

Definition 6.4 A subset R C A X B 1is called a relation from A to B. If A = B, then we
say simply that R is a relation on A.

So if A is the set of all readers of these notes and B is the set of all flavors of ice cream,
then
R ={(a,b) € A x B : a likes b-flavored ice cream}

is a relation from A to B. One element in R is (Diller, strawberry). This is not the only
element in R, since the author of these notes enjoys several flavors of ice cream. However,
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(Diller, Chunky Monkey) is certainly not in R, even though it is a well-documented element
of A x B.
An example of a relation on Z is the order relation

R={(a,b) € Z X Z:a<b}.

So a < b means exactly the same thing as (a,b) € R. In fact, one often writes aRb (‘a is
related to 0’) instead of (a,b) € R (‘(a,b) belongs to R’), but keep in mind that the two pieces
of notation mean exactly the same thing. Concerning the example in the previous paragraph,
[ might equally well have said Diller R strawberry (or better yet, Diller O strawberry!)

Definition 6.5 A relation R on a set A is called
e Reflexive if xRx for every x € A;
e Symmetric if xRy implies yRx for every x,y € A;
e Transitive if xRy and yRz imply that xRz for every x,y,z € A.

We call R an equivalence relation if R enjoys all three of these properties.

So the order relation < is transitive but not symmetric or reflexive. In particular, it is
not an equivalence relation. Consider on the other hand the following relation on the set A
of all people

R={(z,y) € Ax A:z and y have the same gender}.

Then R is certainly reflexive, symmetric, and (OK there are exceptions here, but not many)
transitive. Hence R is an equivalence relation. More generally and speaking loosely, an
equivalence relation on a set A is a relation that ties together elements that have some
property in common.

Definition 6.6 Let R be an equivalence relation on a set A and x € A be any element. The
equivalence class of x is the set

[z] ={y € A: zRy}.

In the preceding example, there are only two different equivalence classes: the set of all
men, and the set of all women.

Theorem 6.7 Let R be an equivalence relation on a set A. Then each x € A belongs to its
own equivalence class [z], and if y € A is another element, we have either

e tRy, in which case [x] = [y]; or

e R does not relate x and y, in which case [z] N [y] = 0.
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Proof. Let x € A be given. Then xRx because R is reflexive. Hence x € [z].

Now let y € A be another element. Suppose first that Ry. I must show that [z] = [y].
To do this, let z € [y] be any element. Then yRz by definition of equivalence class. Since R
is transitive and we are assuming that xRy, it follows that xRz. Hence z € [z]. This proves
that [y] C [z]. To prove that [z] C [y], I note that by symmetry of R, xRy implies that
yRx. So if z € [y], T can repeat the previous argument with the roles of x and y reversed, to
conclude that [z] C [y]. T conclude that [z] = [y].

It remains to consider the case where x and y are not related by R. In this case, I must
show that [z] N [y] = (. Suppose in order to get a contradiction that z € [x] N [y]. Then by
definition of equivalence class, xRz and yRz. Since R is symmetric, it follows that z Ry, and
since R is transitive it further follows that z Ry, contradicting the fact that = and y are not
related. I conclude that there is no element z in [z] N [y]. O
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7 Congruences

Systems of linear congruences can be solved in much the same way as other systems of
equations: solve the first, plug the solution into the second and solve that, etc. Since this is
generally a laborious thing to do, it’s good to have a criterion that tells us in advance that
the procedure will succeed. The following theorem is the best-known result along these lines.

Theorem 7.1 (Chinese Remainder Theorem) Letmy, ..., my > 2 be integers such that
ged(m;, mj) = 1 whenever i # j. Then for any ay, ..., ay € Z the system of congruences

= a; mod my

ay, mod me

z = aip mod my
has a unique solution modulo mq ...my.

In other words, the system has a solution # = xy and any other solution is obtained by
adding an integer multiple of m; ... m; to xo.

Lemma 7.2 Let mq,...,my be as in Theorem 7.1. Then
ged(mj,my...mj_q) =1
for each j between 2 and k.

Proof. Suppose the assertion is not true for some j: there is £ > 1 such that k|m; and
klmy...m;_1. Replacing k with a prime factor of k if necessary, we may assume that £ is
prime. Thus k|m;...m;_; implies (see Remark 5.11) that k|m; for some i between 1 and
j — 1. But since k|m;, too, we see that ged(m;, m;) > k. This contradicts the hypothesis in
Theorem 7.1 that ged(m;, m;) = 1. We conclude that ged(m;,my...m;_q) = 1. O

Lemma 7.3 Theorem 7.1 is true in the case k = 2

Proof. By definition of congruence, x € Z satisfies xt = a; mod m; if and only if z = a;+km,
for some k € Z. Thus x also satisfies x = a, mod my if and only if m1k = as —a; mod m;.
We are given that ged(mq, my) = 1, so it follows that m; has a multiplicative inverse n
modulo msy. Multiplying the last congruence by n gives

k=nmik =n(ay —a;) mod may,

which holds if and only if £ = n(as — a;) + maol for some ¢ € Z. Plugging this back into the
formula for z, we find that a solution of both congruences is an integer of the form

r=a + mln(ag — al) + m1m2£
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for some ¢ € Z. In other words, the pair of congruences has the unique solution
r = a; +min(ay —a;) mod myms.

t

Proof of Theorem 7.1. Lemma 7.3 tells us that there is an integer x5 such that = satisfies
the first two congruences if and only if x = x5 mod m;ms. Thus z satisfies the first three
congruences if and only if

=9 mod mymy and x = asz mod ms. (2)

According to Lemma 7.2, we have ged(mymsg, m3) = 1. Hence we can apply Lemma 7.3 again
to find x5 € Z such that x satisfies 2 if and only if x = x5 mod mymoms. This proves the
theorem when there are three congruences. Continuing in this fashion, we find an integer
such that x satisfies all k£ congruences if and only if

r =z, modmy...my.
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8 Rational numbers

Theorem 8.1 The following is an equivalence relation on Z x Z, : (a,b) ~ (¢, d) if and only
if ad — bc = 0.

Proof. To see that the relation is reflexive, note that ab — ba = 0. Hence (a,b) ~ (a,b).

To see that the relation is symmetric, suppose that (a,b) ~ (¢,d). Then ad — be = 0,
which is the same as saying ¢b — da = 0. Thus (¢, d) ~ (a,b).

To see that the relation is transitive, suppose (a,b) ~ (¢,d) and (¢,d) ~ (e, f). Then
ad — bec = c¢f —de = 0. That is, ad = bc and cf = de. Multiplying the first equation by f
and the second by b, I find that

adf = bef = bde.

Since d € Z, I know that d # 0. Hence I can cancel the d from the left and right sides, and
[ am left with af = be. That is, (a,b) ~ (e, f).
I conclude that ~ is an equivalence relation. 0

While the equivalence relation in this theorem might look a little strange, it’s origin
becomes much clearer with the introduction of some ‘new’ notation.

Definition 8.2 The ~-equivalence class of (a,b) € ZxZ, is denoted § and called a rational
number. The set of all rational numbers is denote by Q.

So the equivalence (a,b) ~ (c,d) is exactly the same as the (more familiar looking)
equation ¢ = £. The idea here is to develop rational numbers from the ground up, using
integers as a starting point and setting aside the things we already ‘know’ about rationals.
In particular, we’ll keep using the (a,b) ~ (¢, d) notation for the next page or so in order to
avoid the trap of inadvertantly assuming things about rationals that we haven’t yet proven.
However, as you read, you should keep in mind what’s ‘really going on’ at each point, not
forgetting that we're only verifying truths you've accepted without question for most of your
life. Soon enough, we’ll revert to writing rational numbers the in familiar form 7.
Our next result says that any rational number can be uniquely expressed in lowest terms

by cancelling common factors from the ‘numerator’ and ‘denominator’.

Theorem 8.3 For any pair (a,b) € Z x Z,, there is a unique pair (a’,b") € Z X Z, such
that ged(a',b') =1 and (a,b) ~ (a',V'). Moreover, (a,b) = (ka', kb') for some k € Z, .

Proof. Let k = ged(a,b). Then a = 'k and b = bk for some o’ € Z and V € Z,.
Since kged(a',b') = ged(kd’, k') = ged(a,b) = k, it follows that ged(a’,t') = 1. Also,
ab' — ba' = ka'l — kb'a’ = 0. Hence (a,b) ~ (a',V).

It remains to show that the pair (a’,b’) is unique. Suppose (a”,b”) € Z x Z, is another
pair of relatively prime integers equivalent to (a,b). Then by transitivity (a”,0") ~ (a’,V').
In other words,

a//b/ — b//a/.
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From this, I see in particular that ¢'|0”a’. Since ¥' and o’ are relatively prime, it follows that
b'|b". Therefore b” = £V for some ¢ € Z . Plugging this into the previous equation, I get

a't = ovd.

Since V' € Z, is not equal to 0, I can cancel it and get a” = ¢b'. Thus ¢ divides both a”
and b”. Since ged(a”,0”) = 1, it follows that £ = 1. I conclude that v’ = b = ¥ and
a" =ta' =d. Thatis, (¢/,V) € Z x Z is the only relatively prime pair equivalent to (a,b).
0

Now we discuss arithmetic for rational numbers, working first with just ordered pairs.
Given two pairs (a,b), (¢,d) € Z x Z,. we define operations + and - according to the formulas

(a,b) + (¢,d) := (ad+ bc,bd)
(a,b) - (¢,d) = (ac,bd).

The formula for addition might seem a little weird, but it’s really not: just think for a second
about what you get when you compute § + ¢ the way you were taught to do it in elementary
school.
We will say that (a,b) < (¢, d) if and only if ad < be. Note that we rely on the assumption
that b and d are positive in this definition!
The important thing about the definitions of +, - and < from a logical standpoint is that
they ‘respect’ the equivalence relation ~. For instance, the sums
4 =8 J 3 =2
ST M T
look quite different, but they should give the same answer if addition of rational numbers is to
be meaningful. To put it another way, the sum of two rational numbers should be independent
of the particular way we choose to represent the numbers. The following theorem addresses
this issue.

Theorem 8.4 Suppose that (a,b) ~ (a’, V') and (¢,d) ~ (', d’). Then
1. (a,b) + (¢,d) ~ (a',b) + (¢, d);
2. (a,b) - (¢,d) ~ (a, V) - (¢, d);
3. (a,b) < (¢,d) if and only if (a’,b") < (¢, d).

Proof. We’ll prove the second and third conclusions, leaving the proof of the first to you.
The assumption that (a,b) ~ (a/,0') implies al/ = d'b, and similarly (c,d) ~ (¢, d)
implies c¢d’ = ¢/d. Hence,

ach'd" —bdd' ¢ = (ab')(cd') — (a'b)(d'd) = 0,

from which we conclude that (ac,bd) ~ (a'd’,t'd'). That is, (a,b) - (¢,d) ~ (', V') - (¢, d'), so
the second conclusion is true.
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Now if (a,b) < (¢,d), then ad < bc. Multiplying this by ¥/, d’, we obtain (abt’)(dd’) <
(b0 )(ed'). Using (a,b) ~ (a’,V') and (¢,d) ~ (¢, d") again, we deduce

(@b)(dd') < (0)(cd).

Since b and d are positive integers, we may cancel them both, arriving at a’d’ < /¢’. That
is, (a/,b") < (¢/,d’). This proves the third conclusion. O

Corollary 8.5 The following definitions are unambiguous for any rational numbers

Q.

a c
brd ©

c . ad+bc
+g = .

bd
a . c ._ ac
® b dT bd
o 2 < S if and only if ad < be.

Theorem 8.6 All the axioms for arithmetic and order from sections 1 and 2 hold for rational
numbers as well as integers.

Proof. Tt would take several pages to verify all the axioms. I'll make an example of two of
them here, and leave the rest to you.
First I'll prove that axiom A3 is true: there exists an additive identity in Q. Indeed, I

claim that % is an additive identity. To see that this is so, observe that for any other rational
number ¢, I have
a-1+b-0 a

b-1 b

a n 0
b 1
Hence % is an additive identity.

Next I'll prove that axiom O3 holds. Suppose that 7, <,  are rational numbers such that
7 < 5. That is, ad < bc. I need to verify that ¢ + ? <5+ %, i.e. that

af +be cf +de

bf df
To do this, I compute

(af +be)(df) — (bf)(cf +de) = f*(ad — bc) < 0

since f? > 0 and ad < be. Thus ¢ + ? < s+ ?, as I hoped. Axiom O3 is proved. O

Observe that since all the axioms from Sections 1 and 2 hold for rational numbers, so do
all the things that we proved from the axioms in those sections.

Despite the similarity to integers, there are two important ways in which arithmetic and
order are different for rational numbers. First of all, it is almost always possible to divide
one rational number by another.
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Proposition 8.7 Fvery non-zero rational number has a unique multiplicative inverse.

Proof. Suppose that 3 € Q is not equal to 0 := % That is, a # 0. Then

Hence g is a multiplicative inverse for ¢. If x € Q is another multiplicative inverse, then we
have

ab b b
r=z-l=2-——=1-—=—
ba a a
Hence the multiplicative inverse of 3 is unique. U

Existence of multiplicative inverses makes algebra much easier for rational numbers. For
instance, if a,b € Q, the equation
ar =0

has a solution x € Q as long as a # 0. This is definitely not true if we replace Q by Z.
Existence of multiplicative inverses also implies the so-called density property for rational
numbers.

Proposition 8.8 Ifz,y € Q are rational numbers with x <y, then there exists z € Q such
that x < z < y.

Proof. Observe that 20 = 2 + 2 < x +y < y +y = 2y. Multiplying through by 27!, we
obtain
r< 2 r+y) <y.

Hence z = 271(x + y) satisfies the conclusion of the theorem.
Not everything is better for rational numbers, however: the well-ordering principle fails.

Proposition 8.9 The set {x € Q : x > 0} has no smallest element.

Proof. Call the set S. Suppose, in order to get a contradiction, that  is the smallest element
in S. Then = # 0 by definition of S. The density property therefore gives us z € Q such
that 0 < z < z. In particular, z € S. This contradicts the fact that x was the smallest
element in S. We conclude that S has no smallest element. U

Finally, we point out one other deficiency of Q. This one deeply troubled the Greeks
who discovered it.

Theorem 8.10 There is no v € Q such that x> = 2.

Proof. Suppose, to get a contradiction, that the assertion is false: there is a rational number
7 such that



By Theorem 8.3, we can assume that ged(a,b) = 1. Thus
a® = 2b%.

In particular, 2|a - a. Since 2 is prime, it follows from Corollary 5.10 that 2|a. Thus a = 2k
for some k € Z. Plugging this into the previous equation and cancelling a factor of 2 gives

2a° = b2,

Thus 2|b?, which further implies that 2|b. But if 2 divides both a and b, we see that a and b
are not relatively prime. Having reached a contradiction, we conclude that there is no x € Q
such that 22 = 2. O
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9 Real numbers: completeness

In previous sections we have discussed integers and rational numbers at some length. Now
we turn to real numbers. The set of all real numbers is usually denoted with the boldface R.
It includes both integers and rational numbers; that is, Z C Q C R. However, R is strictly
larger than even Q. A real number that does not belong to Q is called irrational.

Among the various important subsets of R, intervals should be mentioned immediately.
These come in various flavors. There are

e open intervals (a,b) :={r € R:a <x < b}
e closed intervals [a,b] :={x € R:a <z < b}
e ‘half-open’ intervals (a, b] or [a,b).

Note that we occasionally use +00 and —oo as the right and left endpoints, respectively, of
open and half-open intervals. This should be understood to mean that the endpoint question
doesn’t exist. For instance [4,00) is the set of all real numbers larger than or equal to 4.

But what exactly is a real number? One might say that it’s something that can be
expressed as an infinite decimal expansion; something like

3.141592654 . ..

for instance. As answers go, this isn’t half bad, but it requires a lot of qualification and
elaboration before one can turn it into a logically water-tight definition of ‘real number.” In
fact, it’s rather difficult to say precisely what one means by the term ‘real number.” Therefore
we will do here as we did earlier with integers. Rather than try to say what real numbers
‘are,” we will content ourselves with tackling the more practical question of how real numbers
behave—i.e. what the rules are for arithmetic and order. In this section, we will be especially
concerned to compare and contrast the behavior of real numbers with that of their nearest
relatives, rational numbers.

As with rational numbers, the real numbers constitute an ordered field: arithemetic and
order of real numbers satisfy all the axioms from section 1 and the additional assertion (see
Proposition 8.7).

M4 Every non-zero real number has a multiplicative inverse.

In particular, division is a (mostly) legitimate operation for real numbers. As a consequence
of the axioms, one can appropriate arguments used for rational numbers to show that real
numbers enjoy the density property (see Proposition 8.8 and its proof) but fail to obey the
well-ordering principle (see Proposition 8.9).

So why, if real numbers turn out to behave pretty much like rational numbers, do we
not just content ourselves with rational numbers and leave the rest to posterity to bother
with? Would it make any difference? After all, as various state legislatures are said to have
noticed, it’s a little easier to think about, say, 22/7 than it is to cope with 3.141592654 . . ..
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Of course, we already began to see at the end of Section 8 that it does make a difference.
Positive rational numbers don’t necessarily have rational square roots. But the deficiency
inherent in rational numbers is actually much deeper that this. Identifying the real problem
requires a definition or two.

Definition 9.1 A set S C R is bounded above if there is a number M € R such that
x < M forallz € S. The number M is called an upper bound for S.

Take for example the open interval S = (0,1). Clearly, 1 is an upper bound for S. So,
for that matter, is 75, or 1,000, 000. If, on the other hand, S is the set of all prime numbers,
then S has no upper bound. Given any M € R, we can always find a prime number that
exceeds M. The moral here is that a set of real numbers needn’t have an upper bound, but
if it has one, then it actually has a great many upper bounds. Nevertheless, as the example
(0,1) suggests, not all upper bounds are created equal.

Definition 9.2 An upper bound M for a set S is called the least upper bound (or supre-
mum) of S, if M is no larger than any other upper bound for S. We denote the least upper
bound for S, provided it exists, by sup S.

We leave it to you the reader to define lower bound and greatest lower bound (also called
infimum) for a set of real numbers. As the wording of Definition 9.2 suggests, least upper
bounds are unique if they exist.

Proposition 9.3 A set S C R has at most one least upper bound.

Proof. Suppose that x1, o are both least upper bounds for S. Then since x; is a least upper
bound and x5 is an upper bound, it follows that z; < x5. The same argument shows that
Ty < 1, too. Hence 1 = x5, and we conclude that S can’t have more than least upper

bound. U
Existence of least upper bounds is the thing that separates R from Q.

Completeness Axiom. A set S C R that is non-empty and bounded above has a least
upper bound.

For instance, the set
S={teR:t* <2}

is non-empty (exercise: name one real number in S). It’s bounded above by e.g. 1.5,
because numbers ¢ > 1.5 satisfy t* > (1.5)? > 2 and therefore do not belong to S. So by the
completeness axiom, S has a least upper bound z. It seems at least plausible that 2% = 2,
and we will prove later that this is indeed the case, but let’s just take it on faith right now.

Now what if we forget about real numbers and only consider rational numbers? Then
our set becomes

S'={teQ:t* <2}
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As before S’ is non-empty (name one rational number in S) and bounded above by 1.5 which
is a rational number. However, S’ has no least upper bound. But wait, you say, it does. The
number x above is still the least upper bound for S’. However, 22 = 2 so by Theorem 8.10,
x is not a rational number. Therein lies the rub: for the duration of this paragraph, we’ve
erased all memory of irrational numbers, so as far as we’re concerned the number z no longer
exists. In summary, S’ has an upper bound but not a least upper bound. In the place we’d
like that least upper bound to be, the set Q has only a hole. This is why we bother with
real numbers.
To see another instance of this phenomena, consider the set

T = {t € R : t is smaller than the circumference of a circle of radius 1}.

This set also has a least upper bound (what is it?), but only if we allow for irrational numbers.
The problem in both these examples is that the set Q is riddled with holes. Everywhere
we’d normally expect to find an irrational number, the set Q has a yawning gap that only a
bona fide real number can fill.

Let us consider the completeness axiom from another point of view by comparing it with
a variant of the well-ordering principle (see Proposition 3.10): Every non-empty subset of Z
that is bounded above has a largest element. The largest element in a set is often called its
mazimum. Note that a maximum is automatically a least upper bound, but not vice versa:
1 is the maximum and least upper bound of [0, 1], but it is only the least upper bound of
(0,1). Hence the well-ordering principle can be regarded as a particularly strong version of
the completeness axiom, and one might imagine that the completeness axiom will play for R
somewhat the same role that the well-ordering principle did for Z. This is certainly true, but
it requires a little more care to put the completeness axiom to work. Let us close this section
by using completeness to derive an ‘obvious’ fact, call the archimedean property, about R.

Proposition 9.4 Given any x,y € R with x > 0, there exists n € N such that nx > y.

Proof. Suppose, in order to reach a contradiction, that x > 0 and y are real numbers such
that nx <y for all n € N. Then y is an upper bound for the non-empty set

S ={nz:n e N}

By the completeness axiom, the least upper bound z = sup S exists. In particular, z —x < z

is not an upper bound for S. So there exists n € N such that nx > 2z — z. Adding 1 to n,
we find
n+l)z>z—c+z==2

But (n+1)x € S, too, so we see that z is not actually an upper bound for S: a contradiction.
O
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10 Sequences of real numbers: convergence

Real numbers are very slippery creatures. Most cannot be pinned down exactly. For instance
we cannot write down /2 precisely as a decimal number. We can only say things like
V2 = 1.414. .., giving a few digits and suggesting with our ... that we could give more
digits if we’d already had dinner and our favorite show weren’t about to start. Since in
most cases, we can only approzimate the real numbers we find, it is essential to have a firm
logical foundation for approximation. It turns out to be rather tricky to get the details of
this just right. Historically, it took centuries to do it. Isaac Newton and the calculus gave
approximation center stage in mathematics, but the logical foundations for Newton’s ideas
weren’t completed until the work of Weierstrass in the latter half of the 19th century.

10.1 Absolute values and distance

In order to discuss approximation, it is crucial to have some notion of ‘distance’ in hand.
That is, it is important to be able to tell how far an approximation is from the thing it
is approximating. Measuring the distance between real numbers is accomplished using the
absolute value function | -|: R — R, which is given by

o] = z if >0
=Y 2 if z<o.

The next result summarizes the most important properties of absolute values.
Proposition 10.1 Given z,y € R, we have

1. |z| >0, and |x| =0 if and only if x = 0;

2. x| =|—x|;

3. |wyl = |x]lyl;

4o |z +yl < o]+ [yl

. |z =yl <z —yl.

The fourth assertion in this proposition is known as the triangle inequaltity, and it will
play a prominent role in our work.
Proof. The first three assertions are readily verified, and we leave the proof of the final
assertion as an exercise. To prove the triangle inequality, we suppose first that x and y are
both non-positive. Then z 4+ y < 0 and

lz+yl=—x—y=|z[+|y|

Similarly, |z +y| = |z| + |y| if x and y are non-negative. If, on the other hand, x and y have
opposite signs—say x > 0 and y < 0, then

|z +yl = [lz] = [yl = £(l=] = [y]) < [z] + |yl
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The sign in the third term is determined by whether |z| or |y| is larger. In any case, we have
shown that |z + y| < |z| + |y| regardless of the signs of z and y. O

For our purposes, the distance between two numbers x,y € R will be the quantity |z —1y].
Note that the first, second, and third assertions in Proposition 10.1 translate to the following
important facts about distance.

e [t —y|>0,and |z —y| =0 if and only if x = y.

o v —y|=ly—2z

o |z —y| <|r—2z|+ |z —y| for every z € R.

10.2 ...into the fray

The key logical construct underlying everything else about approximation is the idea of a
convergent sequence, and it is this idea (specifically Definition 10.3) that we take up now.
Most find it a little tricky to keep straight and use accurately at first, but be persistent.
Once you become truly comfortable with it, your future classes in real analysis (i.e. advanced
calculus) will be much easier for you.

Definition 10.2 IfS is a set, then a sequence (z,,) of elements of S is a functionx : N — §.
The values x,, := x(n) are called terms of the sequence.

For example, one might have S = N and define x : N — S by setting x(n) to be the nth
prime number. Thus z; = 2, xo = 3, x3 = b, etc, and (x,) just gives the prime numbers
in increasing order. The set S in Definition 10.2 is perfectly arbitrary, and one might want
to consider sequences of sets, sequences of chess moves, or sequences of bad movies when
the occasion calls for it. However, for the time being, the set S will always be R, and by
‘sequence’ we will mean ‘sequence of real numbers.” Note also that we’ll often write down
sequences that are missing one or more leading terms. For instance, (%) doesn’t technically
make sense when n = (0, but for our purposes, that won’t matter.

While you shouldn’t forget that a sequence is a actually a special kind of function, you’ll
be well-served most of the time to think of a sequence less formally as a neverending list of
terms. For example (%) is just 1,3, %, %,.... Indeed, whenever you're confused about the
definition of a particular sequence, you should reach for some scrap paper and try to write
down the first five or so terms of the sequence.

Memorize the first half of the following definition word for word, repeat it to yourself
in spare moments, and think about what it’s saying every night as you drift off to sleep.
Imagine that well-armed but mathematically challenged aliens will descend on the planet at
the end of this term and threaten to destroy humanity unless you personally explain this
definition to them.

Definition 10.3 A sequence (x,) is said to converge to a number L € R if for every e > 0
there exists N € N such that n > N implies that |z, — L| < e.
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We call L the limit of (z,,) and write limz,, = L or, less formally, x, — L. If (z,) does
not converge to any real number L, then we say that (x,) diverges.

The following examples show how this definition gets used.
Example 10.4 The sequence (=) converges to 0.

Proof. Let € > 0 be given. By the Archimedean principle, we can find a number N € N
such that N =N -1 > 1/e. Then if n > N, we have

<1< 1
- N 1/e

—_—

n

= = €.

1
n

-9
Therefore lim% = 0. ]

The next example is so simple it’s confusing.
Example 10.5 Given ¢ € R, the constant sequence (c) converges to c.

Proof. Let € > 0 be given. Take N = 0. Then if n > N, and z,, = ¢ is the nth term in the
sequence, we have
|z, —c|=|c—c =0<e

Therefore, limc = c. O

Let’s try something a bit more representative.

n 1

3n—2 3

Example 10.6 lim

Proof. Let € > 0 be given. Let N € N be some number greater than % + % (Note that in
particular N > 1). Then if n > N, we have

n 1 B 2
3n—2 3| |9n—6
B 2
9 —6
2
<
~ 9N —6

2
9(2/3 + 2/9€) — 6

= €.

g

The reader should be aware that in the preceding proof we did not arrive at our choice
of N by luck or magic. Before starting the proof, we solved the inequality |z, — %| < € for
n, making the solution our choice of V.

32



The reader should also take care to see that when we use < or < signs, the inequality
really holds. For instance, when we replaced n by N, which is smaller than n, then the
value of the entire expression really did increase. Many beginners (and not a few seasoned
veterans) are tempted to make mistakes of convenience when working with inequalities,
incorrectly saying that one expression is smaller than another because they want it to be so,
rather than because it is.

Finally, we point out that in order to keep the presentation moving, we often omit a little
algebraic calculation in our work. The first = in the above proof is a good example of this
practice. While it does help control the clutter, it also means that you will find yourself
needing to fill in some of the missing computations as you read. Keep a pencil and paper
handy for this purpose.

Example 10.7 The sequence ((—1)") diverges.

Proof. Suppose, in order to reach a contradiction, that lim(—1)" = L. Take ¢ = 1, for
instance. By definition of convergence, there exists N € N such that n > N implies that
|(=1)" — L| < 1. In particular, if n > N is an even integer, then
()" = L|=]1-L| <1.
Thus L lies in the interval (0,2). Likewise, if n > N is odd, we have
(-)"—-L|=]|-1-L| <1

Hence L also lies in the interval (—2,0). But (0,2) N (—=2,0) = 0, so the limit L does not
exist, and the sequence diverges. 0

Intuitively, the problem in the previous example is that the sequence ((—1)") wants
to have two limits: -1 and 1. The next result says that this sort of simultaneous posses-
sion/consumption of cake is impossible.

Theorem 10.8 A sequence has no more than one limit.

Proof. Suppose that (x,) has two limits A and B. Then for any € > 0, there exists N; € N
such that n > N; implies that
|z, — Al <,
and n > Ny implies that
|z, — B| <.
Therefore, if n is larger than both N; and Ny, we see that
|A—B|=|(A—z,)+ (v, — B)| < |z, — A| + |z, — B| < 2e.

However, ¢ > 0 was arbitrary here, so we have in effect shown that |A — B| is smaller than
any positive number. This implies that |A — B| = 0, i.e. A = B. We conclude that a
sequence has at most one limit. O

An important point concerning the definition of convergent sequence is that one can
always ignore finitely many of the terms. When checking, for instance, to see if some sequence
converges to 7, it is completely irrelevant if the first 600 terms are all equal to —10'°. What
matters is that after some point the terms become close to .
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11 Three useful theorems about limits

After a few tries at using the definition of convergence to prove that some sequence converges,
almost anyone will be left with the nagging sense that life is very precious and short and
that there must be some quicker, more convenient way to dispose of such problems. In this
section, we do our best to validate that sentiment. There are at least three standard ways
to get around using the definition of convergence. None of them, by itself, is foolproof, but
taken together, these three methods will suffice to address most garden variety convergence
problems.

Theorem 11.1 Let (x,) and (y,) be sequences converging to real numbers A and B, respec-
tively. Then

1. lim(z, +y,) = A+ B;

2. limzx,y, = AB;

3. lim(z, —yn) = A — B;

4. if B#0, then limzx, /y, = A/B.

Proof. We will prove the first three of these assertions, leaving the third as an exercise for
you, the reader.

To prove the first assertion, let € > 0 be given. Since limz, = A, there exists N; € N
such that n > Nj implies |z, — A| < €/2. Likewise, there exists Ny € N such that n > Nj
implies |y, — B| < €/2. Therefore, if we set N = max{N;, Ny}, then n > N implies that
€

2

(-t ) = (A+ B)] = |5 — A) + (g~ B < |ou — Al 4 |yu— Bl < S+ S =
The ‘<’ is the triangle inequality, and the ‘<’ comes from the fact that if n > N, then
n > N; and n > N,. In any case, we conclude that lim(z, +vy,) = A+ B.

To prove the second assertion, we again let € > 0 be given. Since lim x,, = A, there exists
N; € N such that n > N; implies |z, — A| < min{¢/2|B|, 1}. Similarly, there exists Ny € N
such that n > Ny implies |y, — B| < ¢/(2|A| +2). If we take N = max{Ny, Na}, and n > N,
then first of all

|Tn| = |20 — A+ Al < |z, — Al +|A| <1+ |A].

Moreover,

Ty — AB| = |2,Yn — 2, B + 2,8 — AB]
= |@nllyn — Bl + | B|zn — B
€ | Ble

< (1+|A
e TR T:]

e+e

= —4+=-=c¢
2 2



To see that third assertion holds, note that
lim(z, — y,) = limz,, + lim(—y,) = limz, + (lim —1)(limy,) = lim z,, — lim y,,.

The first equality holds because of the first assertion in this theorem, the second holds
because of the second assertion in this theorem, and the third holds because of Example

10.5. O
Example 11.2 Let us show using Theorem 11.1 that lim % = % We have
_ (n+1)? Cond (14 1+ lim(1+21) (lim14lim 2)3
lim -———— = lim ———2= =lim b = - = —
2n3 4+ n nd 24 24 lim(2 + —5) lim 2 + lim —

(I+1lim+)3  (1+0)?

2+ (lim1)2 240

1
2

The first two equalities are just algebra. The third relies on the fourth assertion in Theorem
11.1. The fourth uses the second assertion in Theorem 11.1 in the numerator and the first
assertion in Theorem 11.1 in both numerator and denominator. The fifth equality relies in
the denominator on the second assertion in Theorem 11.1, and it uses FExample 10.5 in both
numerator and denominator. The sizth equality follows from FExample 10.4.

Definition 11.3 A sequence (x,) is said to be bounded if there is a number M € R such
that |x,| < M for all n € N.

Proposition 11.4 A convergent sequence is bounded.

Proof. Suppose that (z,) converges to L. Taking e = 1, we then have N € N such that
n > N implies that |z, — L| < 1. In particular, if n > N, then

|Tn| = |z — L+ L| < |z, — L|+|L| <1+ |L].

Moreover, since there are only finitely many indices n smaller than N, it follows that there
is a number K € R such that |z,| < K when n < N.

Therefore, if M = max{K,1+ |L|}, we can conclude that |z,| < M for all n € N. That
is, (x,) is bounded. O

Example 11.5 Here and below, we will consider the sequence (r™) for various real numbers
r. For now, let us suppose that |r| > 1. I claim then (and it’s that (r™) is unbounded. In light
of Proposition 11.4, it follows that (r™) diverges (i.e. if convergent sequences are bounded
then unbounded sequences diverge).

Now my claim that (™) is unbounded when |r| > 1 is intuitively pretty clear. However,
technically, it needs justifying. This can be accomplished in much the same way we proved
the Archimedean Property. Specifically, I suppose in order to reach a contradiction that (r™)
is bounded. That is, there is M € R such that |r|® < M for alln € N. By the Completeness
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Aziom then, I can choose a least upper bound m for the set {|r|” : n € N}. Since |r| > 1, I
have that m/|r| < m and therefore that |r™| > m/|r| for some n € N. But then |r"*'| > m,
contradicting the fact that m is an upper bound for the powers of |r|. It follows that (r™) is
unbounded. g

It is mot true that a bounded sequence converges. For instance ((—1)") is bounded by
1, but we showed in the previous section that it does not converge. However, with a little
additional information, boundedness of a sequence does sometimes imply its convergence.

Definition 11.6 A sequence (x,) is said to be increasing if x, < x,.1 for all n € N.
Similarly, (x,) is said to be decreasing if x,, > x, 11 for alln € N. Increasing and decreasing
sequences are said to be monotone.

Theorem 11.7 (Monotone Convergence Theorem) A bounded monotone sequence con
verges.

Proof. Let (z,,) be a bounded monotone sequence. Without loss of generality, we may assume
that z, is increasing. By the Completeness Axiom for R, boundedness of (z,) implies that
there is a least upper bound L for the terms x,,. We will show that limz, = L.

To do this, let € > 0 be given. On the one hand, we have that z, < L for all n € N
because L is an upper bound for (z,,). On the other hand, since L is the smallest such upper
bound, we know that zy > L — e for some N € N. Moreover, since (z,) is increasing, we
see additionally that x,, > L — € for every n > N.

To summarize, we now see that n > N implies that

L—e<z,<L<L+e

In other words, |z, — L| < e.
This proves that (x,) converges to L. O

In order to apply this theorem, we prove a useful, albeit relatively minor, auxiliary result.
Lemma 11.8 Suppose that (x,,) is a sequence with limx,, = L. Then limz, 1, = L, too.

In other words, shifting the index by one in a sequence does not affect its limit.
Proof. Given € > 0, the hypothesis that x,, — L gives us a natural number N such that
n > N implies |z, — L| < e. But if n > N, then n+ 1 > N, too. Hence n > N implies also
that |z,+1 — L| < e. This proves limz,; = L. O

Example 11.9 Let us again consider the sequence (r™), this time for 0 < r < 1. Then we
have for all n that
0<r"l=p.rm <y <.

That is, the sequence is decreasing and bounded below by 0. By the Bounded Convergence
Theorem, we conclude that (r™) converges to some number L € R. Moreover, the previous
lemma and the second assertion in Theorem 11.1 tell us that

L =limr"*! = (limr)(lim ™) = rL.

That is, L(1—r) = 0. Thus either r = 1, in which caselimr™ =lim1 =1, orlimr™ = L = 0.
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Theorem 11.10 (Squeeze Theorem) Let (a,), (b,), (c,) be sequences whose terms satisfy
an < b, <e¢, for alln € N. If (a,) and (¢,) converge to L € R, then so does (b,).

Proof. Let ¢ > 0 be given. Since lima, = L, we have N; € N such that |a, — L| < €
whenever n > Nj. Similarly, we Ny € N such that |b, — L| < € whenever n > N,. So if we
take N = max Ny, Ny, then for any n > N, we have

—e<a,—L<b,—L<c¢,—L<e.

In other words |b, — L| < e. We conclude that limb,, = L. O

Example 11.11 Returning once more to the sequence ("), we suppose that —1 < r < 0.
Then since 0 < |r| <1 and
—lr* < r® <|r|"

for all n € N, the Squeeze Theorem tells us that
0= —lim|r|"lim —|r|" = limr" = lim |r|" = 0.
Note that if we put all our examples together, we arrive at the following handy fact.

Proposition 11.12 The sequence (r™)
o diverges if r < —1 orr >1;
e converges to 1 if r =1; and

e converges to 0 if —1 <r < 1.
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12 Representing real numbers
Definition 12.1 Let b > 1 be an integer. A base b (or b-ary) expansion is an expression
dpdig_y ... dido.d_1d_o ... (3)

where for each j < k, the digit d; is an integer in the range {0,...,b —1}. By convention,
the leading index k is always taken to be non-negative; if k > 0, then one requires that the
leading digit dj be non-zero.

For instance 3.141592654 . .. is a familiar base 10 expansion. A typical base 2 expansion
would be something like 10100.0010011100. ... Note that for the sake of simplicity we do
not allow a leading minus sign in our expansions. So technically, we’ll only be talking about
b-ary expansions of non-negative real numbers. Our first and principal goal is to explain
carefully how b-ary expansions correspond to real numbers and vice versa.

Given a base b expansion 3, dy ...djdy.d_1d_5 ..., we associate a sequence (x,)nen Of
real numbers as follows. The nth b-ary approximation of the expansion is the real number

k
Ty == Z d]b]

j=-n

We write
Tn = dk...do.d,l d,n

for short. So, for the base 10 expansion 3.14159265. .., we have

3141
=3141=34+1-100'+4-1072+1-1072 = ——.
T3 + + + 1000

Proposition 12.2 We have for alln € N that 0 < x, < bF1 —p™

Proof. Let us recall the formula for a geometric sum: if r # 1 is a real number and m > /¢
are integers, then

Since 0 < d; < b — 1 for each j, we have

bk+1 —_p

k k
0<m, =Y dit) < Z(b—l)bj:(b—l)ﬁ:b’““—b‘".

j=—n j=—n

n

The next result tells us that we can identify each b-ary expansion with a non-negative
real number.
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Theorem 12.3 The sequence (x,) converges to a limit x € R satisfying 0 < z < bF+L,

Proof. Observe that x,.; — x, = d,(nﬂ)b*(”“) > 0. Therefore (x,) is increasing. Proposi-
tion 12.2 tells us that (x,,) is bounded. Therefore, by the Bounded Convergence Theorem,
we find that (z,) converges. The limit z € R is the least upper bound of the terms z,, and
since all terms lie between 0 and v**!, we have 0 < x < bF+1. d

From now on, we will simply write
ZL‘:dded_l

to indicate that we indentify the real number x = lim x,, with the b-ary expansion on the
right. For example, the repeating 5-ary expansion 2.2222... is identified with the real
number

1- 5

— — ]— ]: — . - =

r =limz, = Jgrrolog 2-5 TLILH;OQE 57 =2lim T 2 —1 7%
j=—n

That is 2.2222.-- =2

Having shown that each b-ary expansion gives rise to a real number, we must now show
that each real number comes from some b-ary expansion. To do this, it helps to make a
couple of observations about arithmetic of b-ary expansions.

Proposition 12.4 Suppose in base b that v = dy ...dy.d_1 ... and Then for any ¢ € Z, we
have b* - & = ej1y...c0.6_1 ... where ej o =d; for each j < k.

In other words, one gets the b-ary expansion for b’z by shifting the decimal point ¢ places
to the right in the b-ary expansion for . So in base 10, for example, we have

10° - 3.141592654 - - - = 314159.2654 . . .
Proof. We have

br = b lim dy...dod_q...d_,

n—oo
ke
_ it e A ;
S SR PV ST
Jj=-n j=-n j=—n+L
= hmdk .d_ dgl d, —dk .d_ dgl
n—oo
which is what we needed to show. O

Theorem 12.5 Let b € N — {1} be a given base. Then any real number x € [0,00) has a
base b expansion.
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Proof. Since b > 1, we have that x/b° € [0,1) for some ¢ € N. Moreover, if we can

show that /b’ has a b-ary expansion 0.d_;d_, ..., then it follows from Proposition 12.4 that

x=d_q...d_g.d_4_q.... Therefore, we can assume without loss of generality that = € [0, 1).
For each n € N U {0} we set

m, = max{m € N: and m <b"z}, d_, =m, —bm, ;.

We will show that the numbers d_,, are the digits in a b-ary expansion for x.
First we show that the value of d_,, is appropriate. Since x < 1, mg = 0. For n > 1, we
have
my, < bz <m,+1, (4)

the latter inequality following from the fact that m,, is the largest integer not exceeding 0" .
Similarly, m,_; < 0" 'z < m,_; + 1. In particular, bm,_; is an integer not exceeding b",
so it follows that bm,,_; < m,. Putting these inequalities together, we deduce

0<my —bmy_, < b —bm,_, =bb" 'z —m,_,) <b-1=0.

That is, m,, — bm, 1 =d_, € {0,1,...,b— 1} for every n € N.
Next we show that x,, := m,,/b" is the nth approximant of the expansion

0.d_1d_s ...

Applying the definition of m,, and d,, repeatedly, we obtain

m, = bm,_1+d_,=bbm,_o+d_,1)+d_,
= Vmpo+bd_pi1+d,=...
= mo+b""td o+ 0" 2d o+ -+ bd_pi1 +dy
0"y 40" g+ bd i +dy,

since m,, = 0. Therefore
My,
Ty = F = O.dfld,Q c. d,nJrld,n

as claimed.
Finally, the inequality (4) further implies

< In
x —_ RS
b b T
So by the Squeeze Theorem,
z = lim % =0.d_1d_»

It turns out that b-ary expansions are not always unique. For instance, in base 10,

1 =1.000---=0.9999999...
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One can see that the second expansion really does represent 1 by directly computing the
sequence of approximants and then evaluating the limit. Alternatively, one can apply Propo-
sition 12.4: if z = 0.9999.. ., then we have

10-2=999999..- =9+«

Solving for x gives = 1. It turns out that a real number x has more than one b-ary
expansion if and only if it has a terminating expansion; i.e. one for which there is an index
N such that d, = 0 for all n < N. Moreover, if x has a terminating expansion, then it has
exactly one other expansion (what is it?). We will not prove these things here. Instead, we
turn to the subject of b-ary expansions of rational numbers.

Definition 12.6 A b-ary expansion v = dy,...dy.d_1 ... is repeating if there exist m € Z
and r € Z, such that for all j <m, d; = d;_,. In this case, we write

.',U:dk...do.d,l...dm...dm,m
and we call r the period of the expansion.

For example, in base 8
26.74543 := 26.74543543543543 . . .

is repeating with period r = 3 starting at digit m = —3. The real number associated to a
repeating expansion is rational and can always be computed by using Proposition 12.4 as we
did with 0.9 above. For instance, if z = 26.74543, then

8x — 821 = 2674543.543 — 2674.543 = 2674543 — 2674.

However, one must take some care at this point, because the integers on the right are in
expressed in base 8, whereas we are implicitly working in base 10 on the left. Since base 10
is more familiar, we resolve the problem by converting to base 10 on the right.

32704z = (8°—8%)2 = 2-8°4+6-8°+7-8'4(4—2)-8°+(5—6)-824(4—7)-8+(3—4) = 750503.
Therefore, x = 22298 which (believe it or not) is in lowest terms.

It is also true that every rational number has a repeating b-ary expansion. To see why
this is so, we will compute the base 7 expansion of % Since % <1, we have

2
—=0.d_1d_o9d_5....
5 10203

Multiplying by 7 gives
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The portion of the expansion to the right of the decimal point is smaller than 1, so we must
have 2 = d_; and % = 0.d_sd_3 ... Mutliplying by 7 again, we find

5+% :7-§:d_2.d_3d_4...
Therefore d_s = 5. Continuing in this fashion, we obtain
6 + é = d3d_4d_5---=d_3=6.
1+ % = d 4dsdg---=d_4=1.
At this point, we also notice that
2

£ =0dosd g =0dads. ..

sod_5=d_1,d_¢ =d_o, and so on. That is, the base 7 expansion of % repeats with period
4. We conclude that 5

— =0.2561

5

The ideas used in the previous two examples can be codified to prove

Theorem 12.7 A real number x > 0 has a repeating b-ary expansion if and only if x is
rational.

Proof. If v = dj....dy.d_y ... repeats with period r beginning at digit m, then as in the
previous example, we have

bj_ml‘ —b " = (dk Ce d—m—l)b-

In particular, we have sz =t where s,t € N. Hence x is rational.

Now suppose that > 0 is a rational number. We will show that £ has a repeating b-ary
expansion. If 7 has a terminating (and therefore repeating) expansion, then we are done, so
we may assume that £ does not have a terminating expansion. In particular, we can assume
that ¢ > 2 (why?).

Consider the integers /s mod ¢, j € N. Since every integer is congruent to one of the
integers 0,1,...,t — 1 modulo ¢, we must have

Vs =52 modt
for some j, > j;. In particular, ¢ divides ("2 — 0’')s. Therefore, if the b-ary expansion of 2
is dy...dg.d_q ..., then
. .S
di...d_j,.d_j,_1dj,_o---—dj...d_j .dj_1dj_o--- = (V" — b”); = *.0000--- € N.

It follows (from uniqueness of non-terminating expansions) that d_j,_1 = d_;,_1, d_j,_2 =
dj,—2 and so on. That is, the b-ary expansion of 3 begins repeating with period j, — j1 by
(at least) the —j;th digit.
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13 Subsequences

We saw earlier that the sequence ((—1)"),en diverges. However, it is intuitively clear that in
some weaker sense this sequence ‘converges’ to both 1 and —1. The notion of ‘subsequence’
is designed to give some credence to this intuition.

Definition 13.1 Let (x,)nen be a sequence of real numbers and (ng)ken @ strictly increasing
sequence of natural numbers. Then the sequence (x,, )ken s called a subsequence of (z,,).

So for example, taking n, = 2k shows us that the constant sequence ((—1)%k) = (1) is
a subsequence of ((—1)"). Similarly, taking n, = 2k + 1 shows that the constant sequence
(—1) is also a subsequence of ((—1)™). The first subsequence converges to 1 and the second
to —1. We call these numbers ‘accumulation points’ of ((—1)").

Definition 13.2 If (z,) is a subsequence and (x,,) is a subsequence converging to L € R,
then we call L an accumulation point (or limit point) of ().

Returning to another familiar example, we consider (). Taking n = 2* shows us that ()
is a subsequence. Note that in this case, both the sequence and the subsequence converge
to 0. This is as one would expect.

Proposition 13.3 If (z,) converges to L € R, then so does every subsequence of (x,).

Proof. Let (xn, )ren be a subsequence. Note that since the indices (ny) are strictly increasing
(i.e. mgp < ngyq for every k € N), it follows that n, > k for all k£ € N. This can be proven
inductively, and we leave the details as an exercise for the reader.

To show that limz,, = L, we let € > 0 be given. Since limx,, = L, we have N € N such
that n > N implies |z,, — L| < e. Moreover, if £ > N, we have from the previous paragraph
that ngy, > N. So k > N implies |z,, — L| < e. Therefore limz,, = L. O

The utility of subsequences is that they are more flexible than sequences in many situa-
tions. That is, even when a given sequence doesn’t converge, one can often choose a conver-
gent subsequence. Recall for instance that a bounded sequence needn’t converge. However,
the next result shows that a bounded sequence always has a convergent subsequence.

Theorem 13.4 (Bolzano-Weierstrass Theorem) Fvery bounded sequence has an accu-
mulation point.

Proof. Let (x,) be a bounded sequence-say |z,| < M for every n € N. First we will define
a sequence of closed intervals [ay, bg], & € N with the following properties:

e [ay, b] contains infinitely many terms of the sequence (x,,).

° [akﬂ, karl] C [ak7bk]7

2M

.bk—akIQ—k.
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Indeed we define our intervals ‘recursively’. We take [ag, bg] = [—M, M]. Then we set [ay, b;]
equal to whichever half [ao, 0], [0, bg] contains infinitely many terms of (z,). If both halves
contain infinitely many terms of (x,), then we arbitrarily choose the left half (it doesn’t
matter). We then continue this process ad nauseum: given [ag, bo], [a1,b1], . .., [ag, bk], We
split [ag, by] into two halves of equal length and let [ayy1, bx1 1] be a half that contains infinitely
many points of (z,). One can check without much trouble that the resulting intervals satisfy
all three of the criteria we laid out above.

Observe that since [agi1,bki1] C [ag, bx] for all & € N, it follows that (ay) is inreasing
and (bg) is decreasing. Moreover, |ag|,|bx] < M for all k& € N. Therefore, the Bounded
Convergence Theorem tells us that lima, = A and limb, = B for some A, B € R. In fact,

we have
B—A:Iimbk—ak:limé—]\fzo,
so A= B.

Finally, we choose the indices ny for our subsequence. We let ng = 0. Since [ay, b]
contains infinitely many terms of (z,), we can choose n; > ng to so that x,, € [a;,b]. We
then proceed by iterating this process. Having chosen ng < - -+ < ny, we take advantage of
the fact that [axy1, bgy1] contains infinitely many terms of (x,) to choose ng,1 > ny so that
Tnpyr € [ak-f-l?bk-f—l]'

The end result is a subsequence (z,,) of (z,) satisfying

ar, < x,, < by forall k€ N.

Since lim ay, = lim b, = A, the squeeze theorem implies that limz,, = A. In particular (x,)
has an accumulation point. O

In closing, we consider an example that illustrates the point that sequences can behave
much more wildly than our favorite whipping boy {(—1)"}. Recall that the rational numbers
and the natural numbers have the same cardinality. That is, there is a bijective function
f:N = Q. So letting z,, = f(n) for every n € N, we obtain a sequence (z,) and claim that
every real number is a limit point of (z,,).

To prove the claim, let us fix a real number L € R. To prove that L is a limit point of
(), we must find a subsequence (z,,) C (z,) converging to L. We do this as follows. Let
11 be a rational number between L —1 and L. Such a number exists by the density property.
In fact (and this will be important in what follows), there are actually infinitely many such
rational numbers. For now we just pick one and continue. Because f is surjective, we have
y1 = f(ny) for some n; € N.

Now we pick a rational number y, € (L — 1/2,L). Again, we have yo = f(ny) for
some ny € N. Moreover, we can assume that n, > nq; in other words we can assume that
y2 # f(0), f(1),...f(n1). This is because there are infinitely many rational numbers between
L—1/2 and L, whereas only finitely many of them are accounted for by f(0), f(1),..., f(n1).

We then construct the rest of our subsequence in the same manner. Having chosen
yi = f(m) € (L=1,L), 4 = f(n3) € (L —1/2,L), ...yp = f(m) € (L — 1/k, L) with
ny < ng < .-+ < ng, we choose a rational number yi; € (L — %H,L) different from
f(0), f(1),..., f(ng). Then yri1 = f(ng41) for some nyq > ng.
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The result is that (yx) = (f(nk)) = (zn, )ken is a subsequence of (x,,) satisfying L—1/k <
Tp, < L for every k € N. Since L = lim L — 1/k = lim L, the Squeeze Theorem tells us that
L =limx,, . That is, L is a limit point of (z,).

Since L was an arbitrary real number, we conclude that every real number is a limit
point of (z,).
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14 A Bit About Continuity

To wrap up our discussion of real numbers, we briefly consider the notion of a continuous
function. The reader should be aware that there is a good deal more to say about this
subject than we will mention here. Any undergraduate course in ‘analysis’ (i.e. advanced
calculus) would go into more depth about continuity. However, our abrieviated discussion
of continuity will allow us to state two important theorems about continuous functions and
then end where we began with real numbers: with a statement about nth roots.

Definition 14.1 Let S C R be a set and f : S — R a function. We say that f is continuous
at a € S if for every sequence (x,) in S such that x, — a, we have

lim f(zn) = f(a).
If f is continuous at every point of S, we say that f is continuous on S.

In other words, f is continous if you can ‘move limits inside f’.

Example 14.2 Every polynomial P(x) = cya® + cp_12* 1 + - - + 12 + ¢o with coefficients
o, - - -, Cx € R s continuous on R. This follows from Theorem 11.1: if x,, — a, then

lim P(x,) = lim(ckxﬁ + ck_lxﬁ_l + -tz +
= lim(cpa?) + lim(cp_12" ' 4 - + lim ey 2, + lim ¢
= (limep)(limz,)* + (lim ¢ ) (lim 2,,)*~* 4 (lim ¢; ) (lim 2, ) + lim ¢

= af + 1"+ cia+ g = Pla).

Using the same kind of argument, one can also show that every rational function (i.e. quo-
tient P(z)/Q(x) of polynomials) is continuous on its domain (i.e. where the denominator is
non-zero).

Example 14.3 The function f: R — R given by
1 if x>0
f(x)_{ ~1 if ©<0
is not continuous at 0. To see this, consider the sequence (—1/n). This sequence converges
to 0. Howewver,

lim f(—1/n) =lim—1=—-1#1= f(0)

contrary to the definition of continuity.

Theorem 14.4 Let f : [a,b] — R be continuous on the closed interval [a,b]. Then there are
POINLS Topin, Tmaz € [a,b] such that

f(@min) < f(2) < f(Tmaz)

for every x € [a, b)].
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In other words, a continuous function on a closed interval has a maximum and a minimum
value.
Proof. We will prove the existence of x,,,,. The proof for z,,, is similar. We define a
sequence of points z,, € [a,b] in one of two ways, depending on whether the range f([a,b]) C
R is bounded above.

If the range is not bounded above, then for each n € N we can choose z,, € [a,b] so that

If the range is bounded above, then by the completeness axiom, the least upper bound
M := sup f([a,b]) exists. In this case, we can find for each n € N a point z,, € [a, b] such
that f(z,) > M — <.

In either case, we get a sequence (x,) inside the closed interval [a,b], so the Bolzano-
Weierstrass Theorem tells us that we can find a subsequence (z,, )yen C (x,,) converging to
some point T, € [a,b]. Since f is continous, we see that

lim f(.%’nk) = f(xmam)-

k—o0

However, if the range of f is unbounded, then we also have that |f(z,,)| > ny for every
k € N. Since n;, — oo and k — oo. This implies that the sequence of values (f(z,,))ren
is unbounded and (by Proposition 11.4) must diverge. This contradicts limg_,oo f(2n,) =
f(Zmaz ), so we conclude that the range of f is actually bounded.

This means that we are in the second case: M — n—lk < f(zn,) < M for every k € N.

Since M = lim M = lim M — n—lk, the Squeeze Theorem implies that

M =lim f(zn,) = f(Tmaz)-
Since M is an upper bound for the range of f, we have that f(z) < f(xpa) for every
x € [a,b]. O

Theorem 14.5 (Intermediate Value Theorem) Let f : [a,b] — R be a continuous func-
tion. Suppose that y is a number between f(a) and f(b). Then there exists x € [a,b] such

that f(x) =vy.
To prove this, we need

Lemma 14.6 Suppose that (x,,) is a convergent sequence such that x, < C for everyn € N.
Then lim x,, < C'.

Proof. Exercise. O

Proof of the Intermediate Value Theorem. Suppose for argument’s sake that f(a) < f(b)
(the opposite case is handled similarly). Then the set

S :={z € la,b]: f(x) <y}
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contains a, and is bounded above by b. By the completeness axiom, it therefore has a least
upper bound z € [a,b]. For the moment, let us assume that a < z < b. We will deal later
with the possibility that x = a or x = 0.

We define two sequences (a,), (b,) converging to x as follows. For every n € N we let
b, € [a,b] be a number satisfying x < b, < z + 1/n. Similarly, we let a,, € S be a number
satisfying x — 1/n < a,, < x. Note that we can choose a, this way because z is the least
upper bound for S. All told, we have

1 1
r——<a,<zx<b, <zx+ —.
n

S

So by the Squeeze Theorem lim a,, = lim b, = z. Moreover, since f is continuous and b,, ¢ S
for any n € N, we have

f(x) =Tim f(bn) = y.

Likewise, since a,, € S for every n € N, continuity further tells us that

f(x) =lim f(an) <y.

Putting the two inequalities together, we get f(z) =y, and the theorem is proved.

It remains to discuss the possibility that, for instance, * = b. In this case, we define
the sequence (a,) as above and find again that f(b) = lim f(a,) < y. But f(b) > y by
hypothesis, so we conclude that f(b) = y. The case z = a is handled similarly. O

Corollary 14.7 Given any n € Zy and y € [0,00), there exists a unique x € [0,00) such
that "™ = y.

Proof. Let f :[0,00) — R be given by f(z) = 2. In particular, f is a polynomial and
therefore continuous on [0, 00).
Suppose first that y < 1. Then

f0)=0<y<1=/f(1).

Therefore, by the Intermediate Value Theorem there is a number = € [0, 1] such that 2™ =
fl@) =y.

Suppose instead that y > 1. Then since n > 1, we have f(1) =1 <y < y" = f(y).
Therefore, by the Intermediate Value Theorem again, there exists x € [1,y] such that 2" =
f(x) = y. This proves that every non-negative real number has a non-negative nth root.

Now suppose that some y € [0,00) has two non-negative nth roots z; and x5. Then
¢ = . Now we have either z; < o, 1 > @9, or 1 = x9. If 27 < x5, then n > 1
implies 2] < 2%, which cannot be. Similarly, zo < x; implies z§ < z7. Therefore, the only
possibility is x1 = zo. This proves that non-negative nth roots are unique. U
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15 The Fundamental Theorem of Algebra

The main goal of this section is to prove

Theorem 15.1 (Fundamental Theorem of Algebra) Every non-constant polynomial has
a complex root.

The proof relies on two basic facts that we will not prove here. However, it should be
emphasized that we have already proved these things in the setting of real numbers and the
proofs in the complex case are completely parallel. What is lacking is theory of convergence
sequences of complex numbers, and as it turns out, this theory proceeds readily from the
things we have done for sequences of real numbers.

Proposition 15.2 FEvery polynomial P : C — C with complex coefficients is a continuous
function.

Theorem 15.3 If D = {z € C: |z| < R} is a closed disk, and f : D — C is a continuous
function, then there exists zy, z1 € D such that | f(2o)| is minimal and | f(z1)| is mazimal—i.e.

1f(z0)| < |f(2)| < |f(21)] for every z € D.

Taking these two facts for granted, we now proceed by fixing a polynomial P(z) =
a, 2" 4 - - - + ag with coefficients a; € C and a,, # 0.

Lemma 15.4 There exists R > 0 such that |z| > R implies |P(2)| > |P(0)].

The proof of this lemma is a little messy, but it is essentially just using the fact that for
|z| large enough, the leading term a,2" in P(z) is much larger than all of the others put
together.

Proof. Note that if |z| > 1, we have

1P(2)] = lanz"| =

n—1

§ n—1
(ljZ

Jj=0

n—1
> anl2]" =) ]|
j=0

n—1
> anl2]" = 2" ) lay]
7=0

n—1

= 2" lanllz] = Y lag)-

=0

The first two inequalities follow from the triangle inequality. The third inequality is where
the assumption |z| > 1 is used. If we further assume that

n—1
2] > fan| ™! <|ao| +> Iaj|> ,
7=0
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then we can continue the previous estimate as follows.

n—1 n—1
[P(2)] = 2" (laol + Y lagl = D> las) = [2]"Hao| > ag-
7=0 7=0

Since P(0) = ao, this proves that |P(z)| > |P(0)| whenever
n—1
|z| > R := max {1, |ay| ! <|a0| + Z |aj|> } .
=0

Corollary 15.5 There ezists zy € C such that |P(zy)| < |P(z)| for all z € C.

Proof. Let R be as in the Lemma 15.4 and let D = {z € C : |z| < R}. By Theorem 15.3,
there exists zg € D such that |P(zg)| < |P(z)| for all z € D. Since 0 € D, Lemma 15.4 tells
us that

|P(20)] < [P(0)] < [P(2)]

for all z ¢ D, too. Since C = DU (C — D), we conclude that |P(zy)| < |P(z)| for all z € C.
U

Proof of Fundamental Theorem of Algebra. Suppose, in order to get a contradiction, that
the polynomial P(z) has degree n > 1 but no roots. Let zq, as in Corollary 15.5, be the
point where |P(z)| is minimal. Then Q(z) := P(z + 2¢) is also a degree n polynomial with
no roots, and |Q(z)| achieves its minimum value at z = 0. Since Q(0) # 0, we have

2) =co+ cp + e 2T L ep2”

Q(2) +

where ¢y # 0 and k < n is the smallest positive index such that ¢, # 0. In other words
Q(2) = co + 2™ + 2" R(2)

for some polynomial R. Let w € C satisfy w* = —cy/c, and M be the maximum value of
|R(z)| among points z with |z| < |w|. Then for r < 1 we have

1Q(rw)| = |cot+epr™w +rF T w T R(rw)| = |co(1—r®)+rF T wb T R(rw)| < |eo|(1—r") 4+ Mr* T w|FHL
And if we further assume that 0 < r < %, we find

k
,
|Q(rw)| < feol (1= %) + Mr - r*|w[*F < feo| (1 = ) + [eo| 7 = |eol (1 = 7%/2) < |eol.

This contradicts the fact that |Q(0)| = |co| is the minimum value of |Q(z)|. Therefore @ has
a root after all, and so does the original polynomial P. O
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16 Cardinality

We learn the following principle when we are quite young: one can determine whether two
different sets contain the same number of objects by pairing each object in the first set with
an object in the second; if there are no objects left over in either set, then the sets are the
same size. Most of us first employed the set of fingers on our hands as the benchmark for
sizing up other sets. Later on, we learned to abstract the pairing game somewhat and use
(subsets of) N as our standard yardstick. It was Cantor’s simple but revolutionary idea to
extend the whole ‘comparing by pairing’ idea to permit comparison of sizes for infinite sets.
The fundamental notion is as follows.

Definition 16.1 We say that two sets A have the same cardinality if there exists a bijection
f A — B. For short, we write #A = #B. More generally, we say that #A < #B if there
exists an injective function f: A — B.

Since a bijection and its inverse are both injective functions, it follows that #A4 = #B
implies #A < #B and #B < #A. The notation suggests that the converse should also be
true: if #4 < #B and #B < #A, then #A = #B. However, that is not always so obvious.
For instance. the functions f : (—1,1) — [—1,1] given by f(z) =z and g : [-1,1] — (—1,1)
given by g(y) = y/2 are both injective. Hence #(—1,1) < #[—1,1] and #[—1,1] < #(—1,1).
But it’s not so clear whether there exists an actual bijection h : (—=1,1) — [—1,1]. In fact,
there is. With a some ingenuity you can even give a formula for the function in this case.
More generally, though, the Schroeder-Bernstein Theorem says that having an injection in
either direction always implies that there’s a bijection.

Theorem 16.2 (Schroeder-Bernstein, also Cantor) Suppose that A and B are sets and
that there exist injective functions f : A — B and g : B — A. Then there is a bijection
h:A— B.

So #A < #B and #B < #A imply that #A = #B after all. The proof of this is
amazingly short, but without elaboration it is also amazingly difficult to grasp. Here I drag
the argument out a bit by tying it to a more familiar conundrum. Which came first: the
chicken or the egg? Hopefully this makes it a little easier to understand.

Let’s call the elements of A ‘eggs’ and those of B ‘chickens’. If b = f(a), then we’ll say
that b ‘hatched from a’; and if a = g(b), we’ll say that ‘a was laid by b (which sort of implies
that all chickens are hens here, but this is what happens when you ruin a nice analogy by
thinking too hard about it). Since f and g are injective, we know that no chicken hatches
from more than one egg; nor is any egg laid by two different chickens. On the other hand,
neither f nor g are assumed to be surjective: there might be ‘unhatched’ chickens (i.e. those
in B — f(A)) and ‘unlaid’ eggs (i.e. those in A — f(B)).

Observe that each chicken and egg has an ‘ancestory’: for instance, if ag € A is an egg
laid by by € B, and by is hatched from a; € A and a; is laid by b; € B, then the last few
generations in the ancestory of ag are ag, by, a1,b;. Now the ancestory of ag can be quite
short. For instance, if ag is an unlaid egg, then the entire ancestory of ay consists of the
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single generation ‘ap’. More generally, if somewhere in the ancestory of ag, we encounter
an unlaid egg a,, then the family tree stops there: and the full ancestory of ag is the finite
sequence

ag, by, a1, b1,...,0,-1,bp_1, Q.

In other words, ag = g(f(g(f(...9(f(as))...))). We let Ay, C A consist of those eggs
whose ancestors begins with an unlaid egg.

Similarly, it could happen that the chicken came first: if we meet an unhatched chicken as
we descend through the generations preceding ag, then the full ancestory of is ag, by, . . ., by_1, Gn_1, bn,
where the unhatched chicken b, € B is the ultimate progenitor. We let A p;cren denote the
set of eggs whose ancestors begins with an unhatched chicken.

A final possibility is that there is no ‘first” ancestor: as we go back through the generations
preceding ag, we never encounter an unhatched chicken or an unlaid egg, and the ancestory

of ag is then infinite ag, by, a1, by, as, b, .... I should point out here that an ancestory might
be infinite by being periodic: e.g. it could be that ay is laid by by which hatches from a;
which is laid by b; which hatches from ag. So the ancestory aq, by, ai, b1, ag, by, ay, by, ... is

infinite with period two3. Regardless, let us denote the set of all eggs with infinite ancestories
by Ainfinite-

This exhausts the possibilities for ancestories of eggs: we have A = A5y U Acpicken U
Ain finite, Where the three subsets on the right are mutually disjoint. We have a corresponding
partition-by-ancestory B = B.gq U Benicken U Bin finite Of chickens.

Now we note that if b = f(a) is the chicken that hatches from an egg a € A.,,, then
the ancestory of b looks like b,a,bg,aq,bq,...,a, and therefore also begins with an egg.
This shows that f(Aegg) - Begg- Slmllaﬂy f(Achicken) - Bchicken7 f(Ainfinite) - Binfiniteu
G(Begg) C Acyg, and so on. Moreover, since every b € By, has at least one egg among
its ancestors, we see that f(Aeyy) = Begg. As f is injective by hypothesis, it follows that
[ sends A, onto Be,, bijectively?. We likewise have that g : Benicken — Achicken and
f : Ainfinite — Binfinite are bijeCtive'

Putting all this information together, we see now that we can define a bijection h : A — B
as follows: ‘

h(a) = { j(a) ¥f a € Acgg Or @ € Aipfinite
g (b) if ac Achicken

Then h is well-defined because the sets Acgg, Ainfinite and Acpicken form a partition of A and
because g : Benicken — Achicken 15 invertible. And h is bijective because A.yq, Ain finite, Achicken
are sent bijectively (by f, f, and g, respectively) onto the sets Beyg, Binfinite, Behicken Which
partition B. This completes the proof of the Schroeder-Bernstein Theorem. The issue of
whether chickens or eggs came first remains open. U

3evidently, time travel is possible in the chicken and egg universes we are considering!
‘note that by definition unhatched eggs belong to Acyy but not g(Begg); 50 g @ Begg — Aegg is not
necessarily surjective.
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Glossary of notation

vV for every

= there exists

! there exists unique

O end of proof (alternatively, ‘QED’)
= implies

= is defined to be equal to

Z set of integers ..., —2,—1,0,1,2,...
N set of non-negative integers 0,1, 2, ...
Z, set of positive integers 1,2, ...

Q set of rational numbers

R set of real numbers

alb  the integer a divides the integer b

€ is an element of; e.g. ‘3.2 € R’ means that 3.2 is an element of R.
E?:maj Qpm + -+ ay

() the empty set

AXx B cartesian product of the sets A and B
xRy x is related to y by R

[x]  equivalence class of x

= modm congruent modulo m

f:A—B f is a function from A to B

#A cardinality of A

sup S least upper bound, or supremum, of a set S C R

inf S greatest lower bound, or infimum, of a set S C R
() sequence T, L1, Lo, .. .
limz,  limit of the sequence (z,,)
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