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OFDM Carrier Synchronization Based on
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Abstract—Carrier frequency synchronization is critical to the
quality of signal reception in OFDM systems. This paper presents
an approximate maximum-likelihood (ML) carrier frequency
offset (CFO) estimation scheme based on time-domain channel
estimates which retain the CFO information in the form of
phase rotation. The proposed ML CFO estimate is investigated
under static as well as time-varying fading channels. Statistical
properties of the estimator are examined and Cramer-Rao lower
bound (CRLB) is derived. Theoretical analysis and numerical
simulations show that the proposed CFO estimator renders
excellent performance with lower computational complexity. The
proposed CFO estimate also has an advantage of allowing for
more flexible pilot patterns.

Index Terms—Carrier synchronization, maximum likelihood
estimate, OFDM, time-varying multipath fading channel.

I. INTRODUCTION

THE demand for multi-media wireless communication
services is pushing data rates up to hundreds of mega

bits per second. At such high data rates, the physical nature of
wireless channels are extremely time-varying and frequency-
selective. Multi-carrier transmission is an effective way to
combat such impairments [2], [3]. Orthogonal frequency di-
vision multiplexing (OFDM), one of the multi-carrier tech-
niques, features high spectral efficiency and robustness to
multipath. By transforming the wide-band frequency-selective
channel into a set of narrow-band flat fading channels, OFDM
receiver has a drastically simplified equalization process which
can be accomplished using a one-tap frequency-domain equal-
izer. Therefore, OFDM has been employed in various commer-
cial applications that include WLAN (IEEE 802.11a/g/n and
HIPERLAN/2), WMAN (IEEE 802.16), DAB-T and DVB-T,
and it is also considered a good candidate for the future 4G
systems.

In OFDM systems, the number of subcarriers is typically
in the order of hundreds, or even over thousands. These
subcarriers are spaced close together in the frequency domain,
and are supposed to be orthogonal to each other. As such,
the synchronization requirement (which includes timing and
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carrier frequency synchronization) for OFDM systems is more
stringent than that for single carrier systems [4], [5], [6]. Much
research has been done on this topic in the last two decades,
see, e.g., [3], [7], [8], [9], [10].

This paper considers carrier frequency synchronization in
OFDM systems. Carrier frequency offset (CFO) is attributable
to two factors: one is the local oscillator frequency mismatch
between the transmitter and the receiver; the other is channel
Doppler spread, which is present in mobile environments due
to changing channel conditions between the transmitter and
the receiver. OFDM systems are sensitive to CFO, because
it causes inter-carrier interference (ICI) and attenuates the
desired signal. These effects reduce the effective signal-to-
noise ratio (SNR) in OFDM reception resulting in degraded
system performance [11], [12].

In OFDM systems, carrier frequency synchronization is
usually done in two steps. The first step is coarse synchro-
nization, which usually reduces the CFO to within one-half
of the subcarrier spacing [3]; this is followed by fine car-
rier synchronization, which further estimates and reduces the
residual CFO. In this paper, we focus on the problem of fine
carrier synchronization. For fine carrier synchronization, CFO
estimation can be done in either the time domain [13] or the
frequency domain [14], [8], [15]. Time-domain schemes are
based on time-domain correlation of the received signal, while
frequency-domain schemes are based on using the frequency-
domain phase information in consecutive OFDM symbols.
Most of the conventional fine carrier synchronization methods
are frequency-domain approaches. In [8], Moose derived a
maximum likelihood (ML) estimate for the CFO using two
identical successive training symbols. In [15], Tsai et al.
derived a weighted least-squares (WLS) method to estimate
CFO and sampling clock offset. These methods do not take
the channel temporal fading into account, so the estimation
accuracy will degrade in the presence of Doppler fading.

This paper presents a CFO estimation scheme based on
time-domain channel estimates. Time-domain channel estima-
tion methods have been considered for OFDM systems by
many researchers, see, e.g., [16], [17]. We show that time-
domain channel estimates, such as the one using SVD in [17],
retain the CFO information in the form of phase rotation of
the estimated channel multipaths. This provides the motivation
to design a CFO estimation scheme based on time-domain
channel estimates, which turns out to be a simple maximum
likelihood estimate (MLE) for the CFO, under some model
approximations. Since it is always a function of the sufficient
statistics, MLE makes the most efficient use of the information
obtained from received data and usually renders very low error
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variance. In fact, it has been shown that if there exists an
unbiased estimator whose error variance achieves the Cramer-
Rao lower bound (CRLB), the estimator is an MLE [18].
Incorporating the Doppler effect of the fading channel, the
proposed CFO MLE is shown to achieve performance gain
over existing schemes [8], [15] under time-varying fading
channels.

Performance evaluation of the proposed scheme is made
through theoretical analysis as well as numerical simulations.
The Cramer-Rao lower bound for the CFO estimate is derived
for both static and fading scenarios. All the results show that
the proposed CFO estimation scheme has excellent perfor-
mance with considerably reduced complexity. The complexity
reduction is due to the fact that the proposed estimator is de-
rived from the time-domain channel estimates whose length is
usually much shorter compared to the Fast Fourier Transform
(FFT) size. Furthermore, the proposed CFO estimation scheme
has a distinct advantage of allowing for more flexibility in pilot
design.

The paper is organized as follows. The system model is
presented in Section II. In Section III, the CFO estimation
scheme is first derived for the static scenario, and then
extended to the fading scenario. CRLB is derived in Section
IV for both static and fading scenarios. In Section V, statistical
characteristics (particularly the mean and the variance) of
the estimates are analyzed. Section VI presents simulation
results to compare the performance of the proposed scheme
to other CFO estimators. Some concluding remarks are given
in Section VII.

II. SYSTEM MODEL

A. OFDM modulation and wireless channel

At the transmitter, the ith OFDM symbol generated from the
frequency domain symbols Xi = [Xi,0, Xi,1, · · · , Xi,N−1]T

can be formulated as

xi =
1
N

WHXi (1)

where N is the FFT size, W is the N × N FFT matrix
with [W]kn = ej2πkn/N and xi = [xi,0, xi,1, · · · , xi,N−1]T

is the resulting time-domain OFDM symbol. A cyclic prefix
(CP) of length Ng is usually added to avoid the inter-symbol
interference (ISI) and to help retain the orthogonality of the
subcarriers in multipath fading scenario.

A typical multipath fading channel is considered here. This
channel consists of L uncorrelated paths, each of which is
characterized by a fixed path delay τl and a time-varying
complex path amplitude αi,l. The time-varying multipath
channel during the ith symbol can be characterized by an
impulse response function as [19]

hi(τ) =
L∑

l=1

αi,lδ(τ − τl) (2)

The baseband OFDM signal (1) is converted to an analog
waveform, up-converted to radio frequency (RF) and transmit-
ted through the time-varying multipath channel (2). The signal
is corrupted by additive white Gaussian noise (AWGN). At
the receiver, perfect timing is assumed throughout this paper.

After down-conversion, sampling and removal of the CP, the
received signal is stored in a length-N data vector ri.

If the carrier synchronization is perfect, after ri is trans-
formed into frequency domain by FFT, the frequency domain
symbol Si is obtained, namely,

Si = Wri = XiHi + Zi (3)

where, Xi is the diagonal data matrix with diagonal entries
[Xi]k,k = Xi,k, Zi is the frequency domain noise with Zi ∼
CN (0, Nσ2I) and Hi is the channel transfer function (CTF)
whose elements can be expressed as [19]

Hi,n =
L∑

l=1

αi,lexp[−j
2πnτl

T
] (4)

where 1/T is the subcarrier spacing.
In the presence of a normalized CFO ε = ΔfT , where Δf

is the actual CFO, the received signal will be

yi,n = ri,n · ej 2πε
N [(i−1)(N+Ng)+Ng+n] (5)

The frequency domain symbol Y i after FFT is given by

Y i = Wy
i
= WDiri, (6)

where Di is the N×N diagonal matrix with diagonal elements
given by

[Di]n,n = ej 2πε
N [(i−1)(N+Ng)+Ng+n], 0 ≤ n ≤ N − 1 (7)

Furthermore,

Y i = WDiri =
1
N

WDiWH︸ ︷︷ ︸
D

′
i

Wri = D
′
i[XiHi + Zi] (8)

The symbol index i may be omitted subsequently whenever it
is obvious, for elegance of representation.

B. Successive OFDM symbol reception under CFO

The conventional way to estimate CFO considers the phase
rotation between two successive OFDM symbols. From (8),
the outputs of the FFT for the ith and the (i + 1)th symbols
are, respectively,

Y i = D
′
iXiHi + D

′
iZi (9)

Y i+1 = D
′
i+1Xi+1Hi+1 + D

′
i+1Zi+1 (10)

Assume that the same OFDM symbols are repeated, i.e.,
Xi+1 = Xi = X. Noting that Di+1

′ = ejαεD
′
i, where α =

2π(N + Ng)/N , Y i+1 can be expressed in terms of Y i as
follows:

Y i+1 = ejαεY i + ejαεD
′
iX(Hi+1 − Hi)

+ D
′
i+1(Zi+1 − Zi) (11)

Here Zi+1 and Zi are uncorrelated noise terms. The channel
Hi and noise Zi are assumed to be uncorrelated. Note that in
the presence of Doppler fading, our model will not consider
the time varying effect inside one OFDM symbol, but Hi and
Hi+1 in (11) are correlated. More specifically, Hi is modeled
as a complex Gaussian process and its time-domain correlation
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Fig. 1. OFDM receiver structure with time domain channel estimate and the
proposed CFO estimation.

function depends on the Doppler frequency Fd and is given
as [19]

Rt,n = J0(2πnFdTs) (12)

where J0(·) is a Bessel function of the first kind of order 0
[20] and Ts is the OFDM symbol period. Here, n is the index
of the OFDM symbol.

The frequency-domain correlation function of Hi depends
on the uncorrelated multipath (2) and can be expressed as [19]

Rf,k =
L∑

l=1

σ2
l exp[−j

2πkτl

T
] (13)

where σ2
l is the average power of the lth path, and the sum

of σ2
l is normalized to one throughout this paper.

Note that, in the case that the channel remains unchanged
for successive OFDM symbols, namely, a static channel
(Hi+1 = Hi) [8], (11) would reduce to

Y i+1 = ejαεY i + D
′
i+1(Zi+1 − Zi) (14)

C. Time-domain successive channel estimates under CFO

In this section, we present an idea of using the time-domain
channel estimates (instead of the frequency domain symbol
Y i) for CFO estimation. A time-domain channel estimation
method has been proposed by Beek and Edfors [16] [17] and
has been extended to two dimensional channel estimation in
[21]. Here we employ the method based on singular-value
decomposition (SVD) presented in [17] due to its simplicity
in theoretical analysis. In the SVD-based OFDM channel
estimation, optimal rank reduction can be achieved by using
the SVD of the channel frequency-domain autocovariance,
namely,

RHH = UΛUH (15)

where RHH is the frequency-domain autocovariance consist-
ing of {Rf,k}, Λ is the diagonal matrix of singular values (λk),
U is the unitary matrix with the singular vectors of RHH as
its columns. The corresponding receiver architecture is shown
in Fig. 1 [16].

To begin, consider the modified rank-p least-squares (LS)
frequency-domain channel transfer function (CTF) estimate,

which is given by [16]

ĤLS = UΔT UHX−1Y (16)

where, ΔT is an N × N diagonal matrix with diagonal
elements

[ΔT ]k,k =
{

1, k = 1, 2, · · · , p
0, k = p + 1, · · · , N

(17)

Since U is unitary, the intermediate result in (16), UHX−1Y ,
yields a time-domain estimate with uncorrelated components.
The diagonal matrix ΔT truncates the estimated time-domain
channel impulse response (CIR) to retain only the p most
dominant multipaths.

The intermediate length-p time-domain CIR is obtained as
follows [17].

ĥp
i
= UH

p X−1Y i = UH
p X−1D

′
i[XiHi + Zi] (18)

The N × p matrix Up is formed by the first p columns of U.
Premultiplying (11) by UH

p X−1, the subsequent time-
domain channel estimate under the influence of CFO can be
deduced as,

ĥp
i+1

= ejαεĥp
i
+ UH

p X−1D
′
i+1X(H i+1 − Hi)︸ ︷︷ ︸

I

+ UH
p X−1D

′
i+1(Zi+1 − Zi)︸ ︷︷ ︸

II

(19)

In the special case of a static channel, i.e., Hi+1 = Hi,
(19) reduces to

ĥp
i+1

= ejαεĥp
i
+ UH

p X−1D
′
i+1(Zi+1 − Zi) (20)

On the other hand, if we consider the optimal rank-p
frequency-domain CTF estimate, i.e., the MMSE estimate,

ĤMMSE = UΔUHX−1Y (21)

where, Δ is a diagonal matrix with elements

[Δ]k,k =
{ λk

λk+β/γ , k = 1, 2, · · · , p

0, k = p + 1, · · · , N
(22)

γ = E{|X|2}
Nσ2 is the average SNR per subcarrier. Apart from

providing the MMSE estimate, the diagonal matrix Δ here also
truncates the time-domain channel response to retain only the
p most dominant multipaths.

The intermediate MMSE time-domain CIR is thus given by
[17],

ĥop
i
= ΔpUH

p X−1Y i = ΔpUH
p X−1D

′
i[XiHi + Zi] (23)

where the p × p matrix Δp is formed by the first p rows and
columns of Δ.

Similarly, considering two successive OFDM symbols gives

ĥop
i+1

= ejαεĥop
i
+ ΔpUH

p X−1D
′
i+1X(Hi+1 − Hi)︸ ︷︷ ︸

I

+ ΔpUH
p X−1D

′
i+1(Zi+1 − Zi)︸ ︷︷ ︸
II

(24)

For the special case of a static channel, it reduces to

ĥop
i+1

= ejαεĥop
i
+ ΔpUH

p X−1D
′
i+1(Zi+1 − Zi) (25)
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From (19), (20), (24) and (25), one can see that using the
SVD-based channel estimates reduces the dimension of the
signal space from the number of subcarriers to the number
of effective multipaths while retaining the CFO information
(ε) which appears as the phase rotation of estimated channel
multipaths. This is the key idea of the proposed CFO estimate
in this paper, i.e., using the phase rotation of the multipath
channel estimates to estimate the CFO.

III. TIME DOMAIN MAXIMUM LIKELIHOOD CFO
ESTIMATE

A. Maximum Likelihood CFO estimate under static channel

We derive the ML CFO estimate using the static channel
model (20). To obtain the MLE for the CFO, the conditional
probability density function f(ĥp

i+1
; ε |ĥp

i
) is considered. It

is evident from (20) that f(ĥp
i+1

; ε |ĥp
i
) is Gaussian with

mean and covariance given by

E[ĥp
i+1

|ĥp
i
] = ejαεĥp

i
(26)

Cĥp
i+1

|ĥp
i

= 2Nσ2UH
p X−1[X−1]HUp ≈ 2β

γ
I (27)

The approximation X−1[X−1]H ≈ E{1/|X |2}I =
β/E{|X |2}I, where, β = E{|X |2}E{1/|X |2} is a constella-
tion dependent factor, is used to obtain (27). Note that for PSK
modulation, (27) is exactly equal without any approximation.
For QAM signals, it will be shown later that this approxima-
tion simplifies the MLE derivation, though it leads to some
performance loss.

Henceforth, the maximum likelihood CFO estimate is ob-
tained by setting the first derivative of the log-likelihood
function to zero, namely,

∂

∂ε
ln{f(ĥp

i+1
; ε |ĥp

i
)} = 0 (28)

and the MLE is given by

ε̂MLE =
1
α

(∠[ĥp
H

i
ĥp

i+1
]) (29)

As mentioned at the end of Section II, intuitively, when CFO
is present, each multipath of the channel estimate undergoes
a common phase rotation as time progresses. The proposed
maximum likelihood CFO estimator then takes the phase
difference between two successive channel estimates to obtain
the estimate.

On the other hand, if we use the MMSE channel estimates
in (25) to derive the maximum likelihood CFO estimate, the
conditional mean and covariance of f(ĥop

i+1
; ε |ĥop

i
) is given

by

E[ĥop
i+1

|ĥop
i
] = ejαεĥop

i
(30)

Cĥop
i+1

|ĥop
i

= 2Nσ2ΔpUH
p X−1[X−1]HUpΔH

p ≈ 2β

γ
Δ2

pI

(31)

The maximum likelihood CFO estimation is given accordingly
as

ε̂MLE =
1
α

(∠[ĥop
H

i
C−1

ĥop
i+1

|ĥop
i

ĥop
i+1

])

=
1
α

(∠[ĥp
H

i
ĥp

i+1
]) (32)

It is interesting to see from (32) that the ML CFO estimate
provided by the MMSE channel estimates has the same
formulation as that provided by the LS channel estimates. The
same result also holds true in the fading channel case.

B. Maximum Likelihood CFO estimate under fading channel

Next we consider CFO estimation with a fading channel
model. Based on the preceding time-domain channel estimate
model (19) and using the complex Gaussian fading chan-
nel statistics described in Section II-B, we can show that
f(ĥp

i+1
; ε |ĥp

i
) is Gaussian with mean and covariance given

below for the time-varying fading scenario (see Appendix I).

E[ĥp
i+1

|ĥp
i
] ≈ ejαεaΛp(Λp +

β

γ
I)−1ĥp

i
(33)

≈ ejαεĥp
i

(34)

Cĥp
i+1

|ĥp
i

≈ (Λp +
β

γ
I) − a2Λ2

p(Λp +
β

γ
I)−1 (35)

≈ 2β

γ
(
γ(1 − a)

β
Λp + I) (36)

where, according to the time-selective channel model (12),
a = J0(2πFdTs) is the fading coefficient, and Λp is the p× p
diagonal matrix consisting of the p most dominant eigenvalues
in Λ. Here we use the same approximation for X−1[X−1]H

as in the static channel. Additionally, Di+1
′ = ejαεiD

′
1. In a

closed-loop operation, the CFO estimate is fed back to correct
the carrier frequency. Consequently, the residual CFO remains
small, thus D

′
1 ≈ I. Besides, from (33) to (34) and from (35)

to (36), we assume that a is close to 1 and SNR is in the
medium to high range. The final covariance matrix is seen to
be independent of time index i. The MLE is obtained from
(28) as below.

ε̂FAD−MLE ≈ 1
α

∠[ĥp
H

i
aΛp(Λp +

β

γ
I)−1C−1

ĥp
i+1

|ĥp
i

ĥp
i+1

]

≈ 1
α

∠[ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i+1

] (37)

Note that the matrix inversion in (37) is simple and acts as
a weighting vector for the inner product of ĥp

i
and ĥp

i+1
,

because Cĥp
i+1

|ĥp
i

in (36) is a diagonal matrix.

As for the MMSE channel-estimate-based ML CFO esti-
mate, we can obtain an equivalent result as

ε̂FAD−MLE ≈ 1
α

∠[ĥop
H

i
C−1

ĥop
i+1

|ĥop
i

ĥop
i+1

]

=
1
α

∠[ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i+1

] (38)

where the covariance matrix is given by

Cĥop
i+1

|ĥop
i

≈ 2β

γ
Δ2

p(
γ(1 − a)

β
Λp + I) (39)

Compare the MLE derived for the fading channel (37)
with that for the static channel (29), the term inside the
angle expression of (37) is the weighted inner product of
the estimated channel while the term inside (29) can be seen
as a simple inner product with equal weight. We rewrite the
formula as (40) and will refer to this estimate as equal-weight
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estimator for the purpose of comparison in the following
sections.

ε̂MLE =
1
α

(∠[ĥp
H

i
ĥp

i+1
]) (40)

Figure 1 shows a schematic diagram of the OFDM receiver
structure with the proposed CFO estimator. The ‘Q’ block
varies depending on whether the LS or the MMSE channel
estimate is used.

IV. CRAMER-RAO LOWER BOUND

In this section, we derive the CRLB under static channel
and time-varying fading channel.

A. Static Case

The observation equations (9) and (10) are repeated here
as,

Y i = D
′
iXH + D

′
iZi = D

′
iS + D

′
iZi

Y i+1 = D
′
i+1XH + D

′
i+1Zi+1 = D

′
i+1S + D

′
i+1Zi+1

Here, S = XH and the channel is assumed to be static, i.e.,
Hi = Hi+1 = H . A vector of deterministic and unknown
parameters is defined as

M =
[
ε |S|T ∠ST

]T
(41)

The probability density function (pdf) of Y =
[
Y T

i Y T
i+1

]T

is CN (μY , CY ). where,

μY =
[
(D

′
iS)T (D

′
i+1S)T

]T

(42)

and CY = Nσ2I2N×2N . The Fischer information matrix
(FIM) [22] is calculated as follows.

[FIMM ]i,j = 2 · Re{∂μH
Y

∂M i

C−1
Y

∂μY

∂M j

}

+ tr{C−1
Y

∂CY

∂M i

C−1
Y

∂CY

∂M j

} (43)

Here, only the estimation of ε is considered, thus only
CRLB(ε) = [FIM−1

M ]1,1 is evaluated. CY is independent of
M . Also,

∂μY

∂ε
=

[
1
N WDiEiW

HS
1
N WDi+1Ei+1WHS

]
(44)

where, Ei is a diagonal matrix with diagonal elements
[Ei]n,n = j 2π

N {(i − 1)(N + Ng) + Ng + n}. Thus,

[FIMM ]1,1 =
2

Nσ2
{ 1
N

SHW(EH
i Ei + EH

i+1Ei+1)WHS}

(45)

[FIMM ]1,n︸ ︷︷ ︸
n=2,3··· ,N+1

=
2

Nσ2
Re{ 1

N
SHW(Ei + Ei+1)WHFnej∠S}

(46)

[FIMM ]1,n︸ ︷︷ ︸
n=N+2,··· ,2N+1

=
2

Nσ2
Re{ j

N
SHW(Ei + Ei+1)WHFnS}

(47)

[FIMM ]n,n︸ ︷︷ ︸
n=2,3··· ,N+1

=
2

Nσ2
· 2 (48)

[FIMM ]n,n︸ ︷︷ ︸
n=N+2,··· ,2N+1

=
2

Nσ2
· 2|S|2n (49)

[FIMM ]m,n︸ ︷︷ ︸
n�=m, n>1 & m>1

= 0 (50)

where [Fn]n,n = 1 and all the other elements are zero. The
FIMM is of the form,

FIMM =
[

d bT

b K

]
(51)

where, d = [FIMM ]1,1, bT = [FIMM ]1,2:2N+1 and K =
diag{[FIMM ]n,n, n = 2, 3, · · · 2N + 1} is a diagonal ma-
trix. As noted before CRLB(ε) = [FIM−1

M ]1,1 = (d −
bT K−1b)−1. After some algebraic manipulation, using the fact
that, [Fn][Fm] = 0 for n �= m, the CRLB(ε) is given by

CRLB(ε) =
1
α2

Nσ2

|S|2 ≈ 1
α2

Nσ2

E[|X |2]HHH

=
1

α2γ

1
HHH

=
1

α2γN
(52)

B. Fading Case

Under the fading channel assumption, the system is mod-
elled as

Y i = D
′
iXHi + D

′
iZi (53)

Y i+1 = D
′
i+1XHi+1 + D

′
i+1Zi+1 (54)

where, Hi, Hi+1 ∼ CN (0, RHH) are samples of the complex
Gaussian process during symbols i and i+1, respectively. Fur-
thermore, due to Doppler fading, Hi and Hi+1 are correlated;
i.e., E[HiH

H
i+1] = E[Hi+1H

H
i ] = aRHH . The joint pdf of
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Y is then,

f(Y ; ε) ∼ CN (02N×1, CY ) (55)

CY =

[
D

′
1(P + Nσ2I)D

′H
1 ae−jαεD

′
1PD

′H
1

aejαεD
′
1PD

′H
1 D

′
1(P + Nσ2I)D

′H
1

]

=

[
D

′
1 0N×N

0N×N D
′
1

] [
P + Nσ2I ae−jαεP
aejαεP P + Nσ2I

]

×
[

D
′H
1 0N×N

0N×N D
′H
1

]

with P = XRHHXH . (56)

In the fading case, the deterministic but unknown parameter
vector reduces to a scalar, i.e., ε. Since E[Y ] = 0, from (43),
the FIM which is a scalar is given by,

FIMε = tr{C−1
Y

∂CY

∂ε
C−1

Y

∂CY

∂ε
} (57)

The CRLB for the fading channel is given accordingly as

CRLB(ε) = FIM−1
ε = 1/tr{C−1

Y

∂CY

∂ε
C−1

Y

∂CY

∂ε
} (58)

When the CFO ε is small, under the assumption D
′
1 =

IN×N , CY can be simplified to

CY =
[

P + Nσ2I ae−jαεP
aejαεP P + Nσ2I

]
=

[
A B
C D

]
(59)

Note that, this assumption actually removes the CFO infor-
mation inside one OFDM symbol, but it helps to obtain an
approximated CRLB for the model that only considers CFO
effect between two successive OFDM symbols under fading
channels. The derivative of CY in (58) can be derived as
(Appendix B)

∂CY

∂ε
= QCY − CY Q, where Q =

[
0 0
0 jαI

]
(60)

Thus, the FIM would be,

FIMε = 2 · tr(QQ − QC−1
Y QCY ) (61)

which can be simplified as,

FIMε = 2α2 · tr{D−1CSc
−1B} = 2α2 · tr{ASc

−1 − I} (62)

where, Sc = A − BD−1C is the Schur’s complement in the
inversion of block matrix CY .

The trace expression can be further simplified when X−1 =
XH , which assumes that the signal constellation has a constant
envelope like Phase Shift Keying (PSK) or 4-QAM signal. The
final result shows that (Appendix B)

FIMε ≈ 2α2E[|Xi|2]tr{R′
HH} (63)

where, R
′
HH = U{(Λ + Nσ2I)[Λ + Nσ2I − a2Λ(Λ +

Nσ2I)−1Λ]−1−I}UH . Though the derivation of (63) assumes
a constant envelop signal constellation, numerical simulations
shows that the exact CRLB (62) and the approximate CRLB
(63) match closely, even for the non-constant envelope con-
stellations such as 64-QAM.

V. MEAN AND VARIANCE ANALYSIS

In this section, we analyze the mean and error variance of
the proposed time-domain ML CFO estimate. Following the
derivation in Section III, we consider a general channel model
that accommodates both (19) and (20), which can be simply
formulated as

ĥp
i+1

= ejαεĥp
i
+ wi+1 (64)

where, wi+1 ∼ CN (0,Cĥp
i+1

|ĥp
i

). For high SNR, the CFO

estimation error can be approximated by (Appendix C)

ε̂ − ε ≈ 1
α

{ Im[(ĥp
i
ejαε)HC−1

ĥp
i+1

|ĥp
i

wi+1]

ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i

}
(65)

It is easily seen from above that the proposed estimator is an
unbiased estimator, i.e., E[ε̂ − ε|ĥp

i
] = 0.

For error variance analysis, we first consider the static
channel, in which, Cĥp

i+1
|ĥp

i

≈ 2β
γ I, (65) can be simply

formulated as

ε̂ − ε ≈ 1
α

{
Im[(hp

i
ejαε)Hwi+1]

hp
H

i
hp

i

}
(66)

Then the variance of the estimation error is (Appendix C)

var(ε̂ − ε) ≈ 1
α2

· β

γ
· 1
E[hp

H

i
hp

i
]

=
1
α2

· β

Nγ
(67)

Comparing with the CRLB for the static channel (52), this
result shows that, at high SNRs, the error variance of the
proposed MLE differs from the CRLB by a scaling factor
β. For PSK signal, β = 1, the error variance of the MLE
achieves the CRLB. For QAM signal, in general β �= 1,
the performance loss of the MLE relative to the CRLB is
due to the approximation of Cĥp

i+1
|ĥp

i

in (27) as 2β
γ I for

the ML estimator. Intuitively, by taking the expectation on
the signal X, the ML estimator will lose certain performance
compared with the optimal combination such as the Moose
MLE, which uses the received signal Y = XH + Z (exact Y
without any approximation on X). As we can see, the WLS
method [15] uses the same approximation for the signal X
in its derivation, therefore it suffers the same constellation
pattern related performance loss, which is verified in the
simulations (Fig. 5) in Section VI. However, by using this
approximation, both the proposed MLE and the WLS scheme
have the advantage that they can work even under different
successive symbols.

As for time-varying channels, Cĥp
i+1

|ĥp
i

≈ 2β
γ (γ(1−a)

β Λp+

I). At high SNR, (65) can be written as (Appendix C)

ε̂ − ε ≈ 1
α

{
Im[(hp

i
ejαε)H(2β

γ (γ(1−a)
β Λp + I))−1wi+1]

hp
H

i
(2β

γ (γ(1−a)
β Λp + I))−1hp

i

}
(68)

The variance of the estimation error is derived as (Appendix
C)

var(ε̂ − ε|ĥp
i
) ≈ 1

α2
· β

γ
∑p

k=1
λk

γ
β (1−a)λk+1

(69)
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TABLE I
COST207 12-MULTIPATH TYPICAL URBAN (TU) CHANNEL MODEL

Path Delay (µs) 0 0.1 0.3 0.5 0.8 1.1

Ave. Power (dB) -4.0 -3.0 0 -2.6 -3.0 -5.0

Path Delay (µs) 1.3 1.7 2.3 3.1 3.2 5.0

Ave. Power (dB) -7.0 -5.0 -6.5 -8.6 -11.0 -10.0
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Fig. 2. Performance comparison of various CFO estimation schemes under
static channel conditions: same PSK pilot symbols.

It will be interesting to compare the error variance of
the equal-weight estimator (40) with the MLE (37) under
the fading channel. The estimation error of the equal-weight
estimator would be

ε̂ − ε ≈ 1
α

{
Im[(hp

i
ejαε)Hwi+1]

hp
H

i
hp

i

}
(70)

Its error variance turns out to be

var(ε̂ − ε) ≈ 1
α2

· β

γ
·
E[hp

H

i
(γ(1−a)

β Λp + I)hp
i
]

E[(hp
H

i
hp

i
)2]

=
1
α2

· Nβ +
∑p

k=1 λ2
kγ(1 − a)

γN2
(71)

We can see from the simulation results in the next session that
the equal-weight estimator has larger error variance compared
to the proposed MLE under fading channels.

VI. SIMULATION RESULTS AND ANALYSIS

Computer simulations were performed with the following
system parameters: number of subcarriers N = 512, length of
cyclic prefix Ng = 52, normalized CFO (frequency deviation
/ subcarrier spacing) fo = 0.01. The Jakes model [20] was
employed to simulate the multipath channel with L = 12
dominant components under static and fading scenarios as
in the classical COST207 Typical Urban (TU) model (Table
I). According to the channel model discussed in Section II,
we applied the Jake’s model with channel taps varying every
symbol. The sample variance of the CFO estimation error
was calculated for 400 OFDM symbols and the results were

10 15 20 25 30 35 40

10
−6

10
−5

SNR

C
FO

 E
st

im
at

io
n 

Va
ria

nc
e

Approx. CRLB
WLS
MOOSE MLE
TD EWE
Theory: TD EWE
TD MLE − Fading
Theory: TD MLE

Fig. 3. Performance comparison of various CFO estimation schemes under
slowly fading channel conditions: same PSK pilot symbols and Fd = 0.005.
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Fig. 4. Performance comparison of various CFO estimation schemes under
fast fading channel conditions: same PSK pilot symbols and Fd = 0.05.

averaged over 1000 Monte-Carlo simulations for each SNR
value. The performance of the proposed estimator was com-
pared with the scheme proposed by Moose [8] and frequency-
domain WLS approach presented in [15].

We first investigated the proposed CFO estimator for PSK
pilots. Repeated successive BPSK OFDM pilots were used
in the simulation. In Fig. 2, we show the comparison of the
error variance of the proposed scheme with those of WLS,
Moose MLE, and with the derived CRLB, under static channel
conditions. In this case, all estimators had almost identical
performance with error variance approaching the CRLB. Fig.
3 and Fig. 4 show the performance comparison under slow
and fast channel fading, respectively. For both cases, the time-
domain MLE has a performance gain over other schemes and
its variance is closest to the CRLB. In Fig. 4 (fast fading),
the theoretical error variance of the TD MLE is lower than
the CRLB. This is due to the approximation taken in the
error variance derivation for the fading channel. By comparing
the time-domain MLE (TD MLE) to the equal-weight time-
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Fig. 5. Performance comparison of various CFO estimation schemes under
static channel conditions: same QAM pilot symbols.
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Fig. 6. Performance comparison of various CFO estimation schemes under
slowly fading channel conditions: same QAM pilot symbols and Fd = 0.005.

domain estimator (TD EWE) (40), it is easily seen that
the performance gain comes from the weighting coefficients
related to the channel Doppler.

We next considered the proposed CFO estimator with QAM
pilots. Figures 5, 6 and 7 show performance comparison
under static, slow and fast fading cases, respectively. By using
identical successive QAM OFDM pilots, the time-domain
CFO estimate suffered some performance degradation due to
the approximation in (27). Under static channel condition,
the performance loss due to the approximation (27) for the
QAM symbol is equal to β, which is consistent with the
error variance analysis given in Section V. It shows that the
performance loss using (27) actually depends on the signal
constellation. For the 64QAM modulation, β ∼= 2.68 which
is about 4dB. We can observe this loss by comparing the
performance of the Moose MLE (which does not suffer from
this approximation loss) to that of the proposed time-domain
schemes in Fig. 5. In the fading cases, this performance loss
will be partly recovered by the fading gain of the proposed
MLE. For slow fading channels (Fig. 6), the Moose MLE
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Fig. 7. Performance comparison of various CFO estimation schemes under
fast fading channel conditions: same QAM pilot symbols and Fd = 0.05.
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Fig. 8. Performance of various CFO estimation schemes under different
CFO levels: static channels and SNR = 24dB.

performs better than the proposed scheme at low SNRs (below
26 dB) and is then surpassed by the time-domain MLE at
higher SNR. For fast fading channels (Fig. 7), the time-domain
MLE is always better than the Moose scheme in the interested
SNR range due to significant fading gain.

It is easily seen from (11) and (19) that the estimation
range of the proposed scheme is [−π/α,π/α], which is
approximately equal to ± 1

2 of the carrier spacing. Here we
investigate the performance of the algorithm for different CFO
levels inside the estimation range and compare with other
algorithms. The simulation results are shown in Figures 8 and
9 for SNR equal to 24dB. For a static channel, the Moose
scheme is least sensitive to the CFO while the WLS scheme
appears to be most sensitive to large CFO values especially for
QAM modulation. Also notice that two Moose MLE curves
overlapped in Fig. 8, which verifies that the performance
of the Moose MLE under the static channel is independent
of the signal constellation. In Fig. 9, results of the same
investigations are provided for both slow fading (lower set
of six curves) and fast fading (upper set of six curves). Note
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Fig. 9. Performance of various CFO estimation schemes under different
CFO levels: time-varying fading channels and SNR = 24dB.
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Fig. 10. Performance comparison of various CFO estimation schemes under
static and slow/fast fading channel conditions: different QAM pilot symbols.

that, for the slow fading case, PSK WLS, PSK Moose MLE
and QAM Moose MLE curves are overlapping. For the fast
fading case, PSK TD MLE and QAM TD MLE have similar
results and perform better than all other curves which are
overlapping in the figure. From these results, we can see that
the performance of the proposed scheme is not sensitive to
the actual value of the CFO.

An important feature of the proposed time-domain scheme
is that it can also work with different successive QAM pilot
symbols, while the Moose MLE [8] can not. Simulations for
different successive QAM pilot symbols are carried out under
static, slow and fast fading channels, and the results are shown
in Fig. 10 for comparison. The lowest set of curves marked
by ‘-’ has three curves (FD MLE, WLS and TD MLE). These
curves are for static channels. The middle set marked by ‘.-
’ has four curves as listed in the legend. These four curves
are for slow fading channels and has a performance floor
around 10−6 at high SNR. The top set marked by ‘:’ also
has four curves as listed in the legend. They are for the fast

fading case. The FD MLE, WLS and TD MLE curves are
overlapping in this case. The FD MLE curves plotted in these
figures are for the estimator based on the frequency domain
channel estimates, which takes the form,

ε̂FD−MLE =
1
α

(∠[Ĥ
H

i Ĥi+1]) (72)

The proposed MLE scheme yields best performance, because
it takes fading effect into account.

When the time-domain channel-estimate based receiver
structure (Fig. 1) is applied in OFDM systems, the proposed
ML CFO estimate also has considerably low complexity
compared to other frequency-domain CFO estimates. Note
that, since the time-domain channel estimates already exist
in these receivers (for the purpose of channel estimation), we
can simply utilize that information without incuring additional
computation going from the frequency domain to time domain.
Looking at the full pilot symbol setting in the simulations,
since the number of independent channel multipaths is L = 12
and the number of subcarriers is N = 512, the complexity of
the proposed ML CFO is O(L) = O(12), while the complexity
of other frequency-domain CFO estimates is O(N) = O(512),
a significant complexity reduction. Furthermore, the proposed
scheme can be implemented with partial pilot symbol settings
that has less restriction on OFDM pilot symbol design. More
specifically, for partial-pilot systems, the pilot pattern can be
designed to facilitate effective channel estimates [14], [17],
[23]. Once successive channel estimates are transformed into
time domain, their phase rotation can be used to calculate the
CFO.

In summary, the proposed CFO estimator exhibits supe-
rior performance with flexible pilot design requirement and
reduced computational complexity. It is applicable to carrier
frequency estimation and also suitable for continuous carrier
frequency tracking in wireless OFDM systems.

VII. CONCLUSION

This paper presented a CFO estimation scheme based on
time-domain channel estimates. Exploring a receiver structure
with embedded time-domain channel estimates, the proposed
method is an approximate ML CFO estimate utilizing the
CFO information which is exhibited through phase rotation of
estimated channel multipaths. The proposed ML CFO estimate
is further extended to the case of time-varying fading channels.
Theoretical analysis and numerical simulations have been
provided to show that the proposed scheme has excellent per-
formance with considerably reduced complexity. Furthermore,
since the scheme is based on time-domain channel estimates,
it has less restriction on the pilot patterns. The idea of using
the time-domain channel estimates can be further extended for
the CFO estimation in MIMO-OFDM systems.

APPENDIX A
DERIVATION OF f(ĥp

i+1
; ε |ĥp

i
) UNDER TIME-VARYING

FADING CHANNELS

We derive the joint pdf of ĥp =
[
ĥp

T

i
ĥp

T

i+1

]T

using (18)
as follows.
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E[ĥp
i
ĥp

H

i
] = E[ĥp

i+1
ĥp

H

i+1
]

= E[UH
p X−1D

′
1XHiH

H
i XHD

′H
1 (X−1)HUp]

+ E[UH
p X−1D

′
1ZiZ

H
i D

′H
1 (X−1)HUp]

≈ Λp +
β

γ
I (73)

E[ĥp
i
ĥp

H

i+1
] = E[ĥp

i+1
ĥp

H

i
]H

= E[UH
p X−1D

′
1XHiH

H
i+1X

He−jαεD
′H
1 (X−1)HUp]

≈ ae−jαεΛp (74)

using the approximations E[X−1ZiZ
H
i (X−1)H ] ≈ β

γ I and

D
′
1 ≈ I. Therefore, we can derive the joint pdf of ĥp ∼

CN (0,Σ), where

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
(75)

with Σ11 = Σ22 ≈ Λp + β
γ I, and Σ12 = ΣH

21 ≈
ae−jαεΛp. Further derivation yields the conditional pdf of
f(ĥp

i+1
; ε |ĥp

i
) as

f(ĥp
i+1

; ε |ĥp
i
) = c · exp{−1

2
(ĥp

i+1
− Σ21Σ−1

11 ĥp
i
)H

×[Σ22 − Σ21Σ−1
11 Σ12]−1(ĥp

i+1
− Σ21Σ−1

11 ĥp
i
)} (76)

This actually shows that f(ĥp
i+1

; ε |ĥp
i
) is Gaussian dis-

tributed with mean and covariance as

E[ĥp
i+1

|ĥp
i
] = Σ21Σ−1

11

≈ ejαεaΛp(Λp +
β

γ
I)−1ĥp

i
≈ ejαεĥp

i
(77)

Cĥp
i+1

|ĥp
i

= Σ22 − Σ21Σ−1
11 Σ12

≈ (Λp +
β

γ
I) − a2Λ2

p(Λp +
β

γ
I)−1

= (Λp +
β

γ
I) − a2Λp[I − β

γ
Λ−1

p + (
β

γ
Λ−1

p )2 · · · ]

{γ � 0} ≈ (Λp +
β

γ
I) − a2Λp(I − β

γ
Λ−1

p )

{a ≈ 1} ≈ 2β

γ
(
γ(1 − a)

β
Λp + I) (78)

APPENDIX B
DERIVATION FOR THE CRLB UNDER TIME-VARYING

FADING CHANNELS

When the CFO ε is small, by the assumption D
′
1 = IN×N ,

CY can be simplified as

CY =
[

P + Nσ2I ae−jαεP
aejαεP P + Nσ2I

]
=

[
A B
C D

]
(79)

Thus,

∂CY

∂ε
=

[
0 −jαae−jαεP

jαaejαεP 0

]

= QCY − CY Q, where Q =
[

0 0
0 jαI

]
(80)

The Fisher information matrix is then

FIMε = tr{C−1
Y

∂CY

∂ε
C−1

Y

∂CY

∂ε
} = 2 · tr(QQ − QC−1

Y QCY )

where, we have used the property of the trace that tr(JK) =
tr(KJ). After some derivation, we can get

FIMε = 2α2 · tr{D−1CSc
−1B} (81)

where, Sc = A − BD−1C is the Schur’s complement in the
inversion of block matrix CY . The trace inside the Fisher
information matrix is

tr{D−1CSc
−1B) = tr{BD−1CSc

−1} = tr{ASc
−1 − I}

where, A = P + Nσ2I = XUΛUHXH + Nσ2I (82)

We can further simplify the trace expression under the simpli-
fying assumption that the signal constellation has a constant
envelope like BPSK, 4-QAM, etc in which case, X−1 = XH .

A = D = XU(Λ + Nσ2I)UHXH ,

A−1 = D−1 = XU(Λ + Nσ2I)−1UHXH ,

and Sc = XU[Λ + Nσ2I − a2Λ(Λ + Nσ2I)−1Λ]UHXH

Hence,

ASc
−1 − I = XR

′
HHXH (83)

where, R
′
HH = U{(Λ + Nσ2I)[Λ + Nσ2I − a2Λ(Λ +

Nσ2I)−1Λ]−1 − I}UH . Thus, for constant envelope signals,
the FIM can be expressed as

FIMε = 2α2tr{ASc
−1 − I} = 2α2tr{XR

′
HHXH}

= 2α2
N−1∑
i=0

|Xi|2R
′
HH [i, i] ≈ 2α2E[|Xi|2]tr{R

′
HH} (84)

Even though the above derivation is based on constant enve-
lope signals, fortunately, the exact (82) and the approximate
(84) CRLBs almost exactly match, even for the non-constant
envelope constellations. This is evident from Fig. 11 where the
exact and approximate CRLBs for CFO estimation in fading
channel with 64-QAM overlap on one another.

APPENDIX C
DERIVATION OF VARIANCE ANALYSIS FOR THE PROPOSED

ML CFO ESTIMATORS

As discussed in Section, we consider a general channel
model that accommodates both (19) and (20), which can be
simply formulated as

ĥp
i+1

= ejαεĥp
i
+ wi+1 (85)

with wi+1 ∼ CN (0,Cĥp
i+1

|ĥp
i

). Meanwhile, the derived CFO

estimators have the general form as

ε̂ =
1
α

∠[ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i+1

] (86)

Considering the estimation error, it can be expressed as

ε̂ − ε =
1
α

∠[(ĥp
i
ejαε)HC−1

ĥp
i+1

|ĥp
i

ĥp
i+1

]

=
1
α

∠[ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i
+ (ĥp

i
ejαε)HC−1

ĥp
i+1

|ĥp
i

wi+1]

(87)
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Fig. 11. Exact and approximate CRLBs for CFO estimation under fading
channels (slow fading Fd = 0.005 and fast fading Fd = 0.05).

Note that, ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i
is a real number. Under a high

SNR and thus a small estimation error (|ε̂ − ε| � 1
2π ), the

estimation error can be approximated by its tangent value as

ε̂ − ε ≈ 1
α

{ Im[(ĥp
i
ejαε)HC−1

ĥp
i+1

|ĥp
i

wi+1]

ĥp
H

i
C−1

ĥp
i+1

|ĥp
i

ĥp
i

}
(88)

Case I. First look at the static channel, in which,
Cĥp

i+1
|ĥp

i

≈ 2β
γ I, (88) can be simply formulated at high

SNRs as

ε̂ − ε ≈ 1
α

{
Im[(ĥp

i
ejαε)Hwi+1]

ĥp
H

i
ĥp

i

}

≈ 1
α

{
Im[(hp

i
ejαε)Hwi+1]

hp
H

i
hp

i

}
(89)

The variance of the estimation error is

var(ε̂ − ε) ≈ 1
α2

·
var(Im[(hp

i
ejαε)Hwi+1]|hp

i
)

|hp
H

i
hp

i
|2

=
1

2α2
·
hp

H

i
Cĥp
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|ĥp

i

hp
i

|hp
H

i
hp

i
|2

≈ 1
α2

· β

γ
· 1
hp

H

i
hp

i

≈ 1
α2

· β

Nγ
(90)

where, we approximate the hp
H

i
hp

i
with its expectation, which

is normalized to N in this paper.

Case II. As for the time-varying fading channel, Cĥp
i+1

|ĥp
i

≈
2β
γ (γ(1−a)

β Λp + I), at high SNR, (88) can be simplified as

ε̂ − ε ≈ 1
α

{ Im[(hp
i
ejαε)HC−1

ĥp
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|ĥp
i
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}

=
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α

{
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i
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i

}
(91)

The conditional variance of the estimation error can be ex-
pressed as

var(ε̂ − ε|hp
i
) ≈ 1

α2

var(Im[(hp
i
ejαε)HC−1

ĥp
i+1

|ĥp
i

wi+1])
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ĥp
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i
|2

=
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2α2

1
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ĥp
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|ĥp
i

hp
i

≈ 1
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· β

γ
· 1∑p

k=1
|hk,i|2

γ
β (1−a)λk+1

(92)

The estimator error variance is then approximated as

var(ε̂ − ε) ≈ 1
α2

· β

γ
∑p

k=1
λk

γ
β (1−a)λk+1

(93)

Considering the equal-weight estimator under the time-
varying fading channel, the estimation error would be

ε̂ − ε ≈ 1
α

{
Im[(hp

i
ejαε)Hwi+1]

hp
H

i
hp

i

}
(94)

Its conditional variance can be expressed accordingly as

var(ε̂ − ε|hp
i
) ≈ 1

2α2

hp
H

i
E[wi+1w

H
i+1]hp

i

|hp
H

i
hp

i
|2

=
1
α2

· β

γ
·
∑p

k=1 |hk,i|2(γ(1−a)
β λk + 1)

|hp
H

i
hp

i
|2 (95)

and its estimator error variance is approximated by

var(ε̂ − ε) ≈ 1
α2

· Nβ +
∑p

k=1 λ2
kγ(1 − a)

γN2
(96)
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