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ABSTRACT

This paper proposes selective update and cooperatioegitatfor
parameter estimation in distributed adaptive sensor nksvé\ set-
membership filtering approach is employed that results duced
complexity for updating parameter estimates at each n&twode,
a significant reduction in information exchange betweerpeoating
nodes, and an optimal strategy to obtain consensus estimake
proposed strategies and the estimation algorithm offemawesy to
explore cooperation in adaptive distributed sensor nédsvor
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consider cooperative schemes that enable neighboringfodsen-
sors in close proximity) to exchange data necessary to agdeal
parameter estimates. Due to the spatial separation of ndiles-
sity gains in estimation can be achieved. Each sensor cffdiffer-
ent perspective of the parameter of interest, e.g., eacdosenpe-
riences different fading impairments. Thereafter, loctireates are
shared with neighboring nodes, and a local consensus éstisrzb-
tained by combining all local estimates within the neighioamd of
concern, see, e.g., [4]. However, the increased informati@ring
among nodes, data aggregation and fusion, may lead to sextem-

Index Terms— Distributed estimation, adaptive signal process-€rgy consumption as well as additional bandwidth requiree].

ing, set-membership filtering, sensor networks

1. INTRODUCTION
In many practical problems, multiple displaced sensorsuaesl to

Thus, it is important that the amount of data communicatiaah la-
cal processing complexity at the nodes are kept to a minimum.

In this paper we propose diffusion strategies that featere
duced node complexity andelective cooperatiorfor distributed
sensor networks. The main objective is to make the entinearkt

-

estimate and track an unknown common parameter, e.g., @eramore energy- and bandwidth-efficient. Thus the nodes shapid

temperature, level of water contaminants, or a target iposithat
characterizes the received signal at different locatiGngnal collec-
tion through a distributed network of sensor nodes improgbsst-
ness of performance and reliability of the network due tanethncy
and provides spatial diversity due to multiple viewing asgll—-4].
Parameter estimation in adaptive networks is typicallyweol
by either a centralized approach or a decentralized appro#c
a centralized approach, signals from all nodes in the nétsioe
collected and processed by a sinfiision centerto yield the pa-
rameter estimate. Clearly, if the network has a large nunaber
nodes, centralized processing may be computationallyilpitivie,
and may require communications over longer range whichsléad
reduced battery life because higher transmit powers areedet®
ensure required SNRs at the receiver. In decentralizethattin,
spatially displaced estimators provide local estimateiskvare then

date their parameter estimates only when needad cooperate
only when such an action is “informative'The important point we
make here is thatontinual updates of parameter estimates and un-
necessary/excessive cooperation may corrupt the netwuatkesad

to worse parameter estimate§ his selective cooperation strategy
is particularly appealing to the following types of netwsrKi) The
network is comprised of a number of clustered neighborindeso
each cluster has dedicated links between each pair of ndiles;
Each node in the network is able to broadcast data to a subset o
network nodes (e.g., its neighbors). Naturally, in thisnsei®, the
number of neighbors is limited by the available resourcesaah
node. The benefits of the proposed selective cooperatiategir
for the first type of networks is clear, namely, reduce the groand
bandwidth required for communication between nodes. The be
efits for the second type of network is primarily to ensure the

combined to render a consensus parameter estimate. Cogpariupdates of parameter estimates are based on data that oéféy g

to the centralized estimation approach, decentralizéthagon re-
duces the amount of data that each estimator needs to pracdss
it improves the robustness of performance. However, it rgijuire
more communication bandwidth especially if cooperatiomagithe
nodes is to be considered.

This paper considers a decentralized estimation probleerevh
the common parameter vector is estimated in a fully disteibunan-
ner [3]. This strategy becomes useful when nodes processatiae
without the explicit knowledge of network topology, and whbe
system’s ability to react to the spatial characteristicshef sensor
data is an important concern. In those situations, it is figaéto

This work was partially funded by the Academy of Finland, $naad
Novel Radios (SMARAD) Center of Excellence, the Fulbrighiki Schol-
arship, Faculty Research Program of University of Notre Barnd by
CAPES and CNPq (Brazil).

information.

To realize the aforementioned selective update and cotbpera
strategies, we propose to employ a set-membership addittéviang
(SMAF) approach, see, e.g., [5—-7], to solve the underlystgra-
tion problems. Most, if not all, SMAF algorithms featusparse
data-dependergelectiveparameter updates. Specifically, these al-
gorithms update parameter estimates only when the recelistzd
contain sufficiently fresh information, namelypnovation to war-
rant an update of the estimate. Since received data ofteotdmn-
tain sufficient innovative information, the SMAF algorithupdates
rather sparsely (often less than 10% of the time). As a caesegg,
the SMAF approach can provide us with novel strategies for ce
tralized and decentralized estimation in adaptive netadhlat of-
fer improved data processing flexibility, and reduced comication
bandwidth and power requirements [8].
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Fig. 1. Distributed network with\/ nodes.

designed such that the output estimation error is upper demin
by a predetermined threshold. We will show in the followilhgtt
employment of SMAF algorithms enables us to reduce not only
the node complexity, but also the feedforward and feedbiadkict
(Items 1 and 3). Furthermore, a consensus estimate can et

in such a way that is consistent with the SMAF framework. The
principles of the proposed adaptive decentralized styatem be
summarized with the following basic steps: 1) Transmissiwdes
transmit their data pairs to their neighbors, 2) Estimationdes
make a local estimate based on all available data pairs, f8)-Di
sion: nodes diffuse their local estimate to their neighparsd 4)
Aggregation: nodes combine all available estimates to fafocal
consensus estimate.

Cooperative schemes developed based on enhanced SMAF prin- 3. SET-MEMBERSHIP NLMS DIFFUSION SCHEMES

ciples will reduce not only the complexity at each sensorendsuiit
the amount of data traffic between nodes. The optimal comdini
rule for the consensus estimate is non-trivial for coneral tech-

The SM-NLMS algorithm can be considered an SMAF counter part
of the conventional normalized least-mean squares (NLM&)-a

niques. The SMAF approach, on the other hand, offers a well derithm. Notably, the SM-NLMS algorithm features a data-degent

fined criterion on how to fuse different local estimates tivarat an
“optimum” consensus estimate.

2. BACKGROUND AND PROBLEM FORMULATION

Consider a sensor network @f nodes, and each node has ac-
cess to the input-output data pafié,. (k), x..(k)}M_,, see Fig.1,
whered,, (k) € R andx,,(k) € RY*! denote the respective de-
sired output signal and input signal vector of a common (gflpbut
unknown vectorw,. Let us define the neighborhootl,,, of node
m as the set of nodes linked to it, including itself [4]. We defin
m to be the first element of the index sk&t,. Specifically, for the
neighborhood of node: in Fig. 1, N, = {m, 1, 2, m — 1, M}.
Each node is supposed to transmit its data pai (k), xm (k)} to
its neighbors. The idea is to collect the data-pairs of rt@gh and
use them to produce a local update, (k) according to a specific
SMF algorithmf[-], i.e.,

G (k) = flWm (k= 1), xi(k), di(k); I € Nom] @)

wherew,, (k — 1) is the consensus estimate of nodet timek — 1.
The local estimate phase is followed by an estimate-difughase,
in which the nodes diffuse their local estimates to theighbors, if
this is considered beneficial. Upon receiving the localnestes, a
consensus estimate is obtained at each node by properlyiiogb
the local estimates of the neighborhood (aggregation phase

Wi (k) = gl (k); | € Nom]. @)

Based on (1) and (2) we make the following observations:

step size and, accordingly, selective update of paramstienates.

In particular, the step-size is optimized whenever thevest is up-
dated. This helps SM-NLMS algorithm to obtain better qyedis-
timates with reduced complexity and expedited convergenwben
compared to the NLMS algorithm. In this section, the SM-NLMS
algorithm will be the core of our proposed diffusion schenvde
herewith develop three diffusion strategies that offefedént levels

of performance, complexity reduction and amount of codp@na
between nodes.

3.1. Diffusion SM-NLMS

In order to reduce the average complexity of the local updatk
the amount of feedback arising from consensus updates, wkogm
the SM-NLMS algorithm [5] to obtain the local parameter ujgda
For this purpose, define tlenstraint sett nodem, H.» (k), as the
set of all vectorsp that make the output error, at nodeand time
instantk, upper bounded in magnitude. In particular,

Hm(k) ={¢ €RY : |dm(k) — ¢'xm(K) <7} (3)

Assume that each node has access to the input-signal anediesi
signal pairs of its neighborhood, i.€d; (k), xi(k) }ien,, - Using an
incremental update strategy like in [4], we can directlylgpipe SM-
NLMS algorithm for obtaining the local estimate at time anstk,
¢,,(k). That is, each data-pair in the neighborhood is used in a se-
guential manner for the local update. In this way the SMARtstyy
is employed to discard data for whieh,, (k) € H;(k), | € Np.
After having obtained the local updates, the nodes rettiesdocal

1. To make a local update, each node needs to transmit (@stimates from all their neighbors and obtain the consesstimate

broadcast) its data pair to all neighbors generafaggfor-
ward traffic

2. The complexity of the update depends on the update f{ile,

employed at each node. In [4], local processing complexgity i
kept low by employing least-mean squares (LMS) stochasti

gradient algorithms.

according to (2), see Section 3.4. As a result of this sttéoghard
SMAF strategy, a reduction in the computational compleistex-
pected at each node. Furthermore, if none of the data paply im
innovation at a certain time instant, i.e., no update is iregy dif-
gusion of the local estimate is unnecessary. On the othet,tesach
node should still transmit its data pdid, x } to its neighbors.

An alternative to the above strategy is for the neighboriodes

3. To obtain the consensus estimate, (2), each node needs 49 share only their local estimates, but not the data painss alter-

share its local update with its neighbors. Thus séeeelback
traffic will be ensued.

native strategy is referred to here as SM-NLMS (NFF) altonit
which still obtains the consensus estimate according to @e

To reduce the node complexity (Item 2), we propose to employSM-NLMS (NFF) is similar to theliffusion onlystrategy considered
an SMAF technique [5], termed SM-NLMS (set-membership nor-in [9] with the LMS estimation algorithm thatpdates parameter es-

malized least-mean squares). In SM-NLMS, the adaptiver fidte

timates continuallyregardless of the benefits of such updates. The



SMAF approach offers the distinct feature sélectivebroadcast-
ing of the local estimates. Though it may slow down convecgen
(since some neighbors’ data pairs are not exploited in iggdates),
it saves power which may be more important in wireless stenar

3.2. Diffusion SM-NLMS with Spatial Innovation Check

The first strategy outlined above requires the transmissfotata
pairs to all the neighbors, namely, complete feedforwaaffits, irre-
spective of whether or not that offers innovation. Our secsinat-
egy aims to reduce this feedforward traffic by executing dirpre
inary innovation check, i.espatial innovation checkat nodel to
decide whether or not to communicate the data paitk), x;(k)}

is a data-dependent step size. Consensus (spatial) udpte-i
formed according to (2).

3.3. Diffusion SM-NLMS with Spatial Innovation and Reduced
Feedback Traffic

The strategy in the previous section aims to reduce the dewdfd
traffic (number of data pairs communicated between nodesh- C
cerning the amount of feedback traffic (i.e., the diffusiéthe local
estimatesp,,, (k)), it is only reduced if no update is performed or,
equivalently, wheny, (k) = 0,V € N,,. However, if a data pair of
the neighborhood is exploited for an update, the local egémeeds
to be diffused to all neighbors. To reduce the feedback traffen

to nodem. The main idea behind the spatial innovation check is thefurther, we could choose to feed back the local estimatechase

following. To perform the spatial update in (2), nogde needs to
know the local estimates of its neighbdi®, (k) }icn,,. When ap-
proaching steady-state, we will hawe,, (k) ~ ¢,,(k — 1). There-
fore, a good indicator that the data pair at nédeill contribute to
an update at node: is whena; (k) in (6) is non-zero if it is com-
puted with the vectogp,,(k — 1). The drawback of such a strat-
egy is that we need to store locally all the neighbors’ esésiarun
the checks, and then unicast the data to each neighborirg wed
think should benefit from the data pair. In a typical wirelsss-
nario, broadcasting data to nearby neighbors seems mdisticea
and the above outlined strategy may not reduce the feedfdrtna-
fic. Therefore, we propose to communicdtg (k), x;(k)} to node
monly if w;(k—1) ¢ H;(k). In other words, if a data pair implies
innovation at a node (resulting in a local update) it is k& im-
ply innovation in neighboring nodes. This approach is jikelyield
similar result as the one discussed above, since near games we
will have w;(k — 1) = ¢,,, (k). During the transient, the approxi-
mation will not be accurate. However, since the solutionl $leafar
from steady-state, innovation check based on either of ¢oovs,
wi(k — 1) or ¢, (k), will likely result in an update.

Let us now define thepatial innovation set;,, (k) as the set of
neighbors for which the following holds true,

Nin(k) = {1 € Nom = ¢y (k — 1) & Hu(k)}. 4)

That is, only the nodes that belong to the spatial innovasiemn
will broadcast data pairs, which will reduce the broadcesfit on
the forward link. The incremental update is identical to S-
NLMS diffusion approach in the previous section, but is nasried
out over the reduced number of data pairs defined/fjy(k). Note
that the spatial innovation set is a functionkgbecause its members
are only the neighbors that will perform an update. The rEous
of the SM-NLMS diffusion algorithm with spatial innovatiameck,
termed SM-NLMS (SIC), presented above are given by

At each noden:

¢m(k) = Wm(k - 1) m(k) = U?ﬂ(k - 1)
For eachl € NV}, (k):
ei(k) = di(k) — ¢y, (k)xi (k) 5)
- (k)el(k)
ai (k)ei (k)

7n(k) — 7 (k) — T

whereo, (k) is the SM-NLMS associated sphere radius [5] and

(k) = {1 —v/la®)l i (k)] >

0 Otherwise

(6)

local innovation test. That is, only if a local data pair imeglinnova-
tion, W (k — 1) € Hum (k) = {w : |dm (k) — W' xm (k)| < v}, we
continue updating with all other data pairs belonging tospatial
innovation set. The resulting algorithm is termed SM-NLMSQ-
RFB). We can expect SM-NLMS (SIC-RFB) to slower convergence
The recursions are given by
em(kf) = dm(k) - WIn(k -
If lem (k)| >~
G (k) = Wi (k — 1),
For eachl € N, (k)
ei(k) = di(k) —

Dxm (k)

m(k) = U?ﬂ(k - 1)

@)

3.4. Consensus Estimate

There are many different ways to implement (2) to combineldhe
cal estimates, see, e.g., [4]. The most common is to simghyap
a weighted average, i.ewn (k) = >,c . ai(k)o,, (k). Alter-
natively, we can consider convex combinations, where cse
building is done pair-wise sequentially. This may be beiwedfitcer-
tain nodes perform better estimation than others [4]. Fersthate-
gies presented in this paper, consensus building can bewdtme
convex combination that is consistent with the SMAF frameéwo
An important difference between the SM-NLMS and the NLMS
algorithms is that, at each recursion, the SM-NLMS alganitten-
ders a set of estimates. Each point in the bounding spbigre=
{p € RY : ||¢p — ¢, |> < 0%} is considered deasible solution
to the underlying estimation problem. Consider the spaak of
combining the local estimate at node and that at nodé € N,,,
which are contained, respectively, in hyper-sphefgsand.S;. To
obtain a consensus estimate;,, we need to find a spheig” that
tightly outer bounds the intersection.8f, andS;. A sphereS;,, that
contains this intersection is obtained by the convex coathmn

S (k) = {w € RV ¢ |lw — wu(k)[|* < o'}
={weRY: (1-N)|w - o, k)
+A|‘W_¢l( )H ( )o—m'l'Ao-l}

The resulting bounding sphere and its cente, which is taken as
the point estimate, are given by

8)

Wi (k) = (1= A)@,, (k) + Ay (k)
oo (k) = (1= Nam (k) + Aot (k) = A(1 = V)| ¢, (k) — ‘f’z(k() H;
9



Minimizing o2 (k) with respect to\ yields

1
k) = {2 K
0
4. SIMULATIONS
In this section we demonstrate the features of the SMAF gliffu
schemes described in Section 3. For comparison purposetsae a
present the results obtained with non-cooperative imphtations
using SM-NLMS and NLMS algorithms, i.e., the parameterneati
tion is independently performed at each node. The netwqdogy
used in the simulations is the same as the one in [9, Fig. &.nE-
work considered hagd/ = 12 nodes and the adaptive filter at each
node hasN = 10 coefficients. The coefficients of the unknown
plantw, were generated randomly. The SNR was set to 30 dB an
the additive noise at each node was AWGN with the same vagianc
o2. The input signal at each node was taken as colored noise gen-
erated by filtering white Gaussian noise through a filter \aithole
at B,,. The values{s,,}_, were taken as independent and iden-
tically distributed random variables uniformly distriledtin (0,1).
For the simulation experiment, we have used the followingupee-
ters: . = 0.2 for the NLMS without cooperatiory = 0.24 for the
NLMS with cooperation, and = /502 for the SMAF strategies.
The parameters were set in order to have fair comparisomritstef
final steady-state error.

o2 (k)—o? (k) .
] AR € (0.1)

(10)
otherwise.

The curves shown in Fig. 2 are the results of 100 independent

runs. SM-NLMS (cooperation) refers to the algorithm présen
in the first part of Section 3.1. Cooperation clearly impvke
convergence speed substantially. For this particular pl@nthe
consensus estimate at a node was obtained by taking thegawafra
the parameter vectors in its neighborhood, which turns@render
comparable results as do convex combinations using hygterss.
Employing the spatial innovation check, namely, SM-NLM$J5
yields speedy convergence and reduces the amount of feeatbr
traffic, i.e., the number of data pairs exchanged among nmktwo
nodes, see Table 1. The reduced feedback solution, i.e NBMS
(SIC-RFB), converges marginally slower, as expected. hewe
the number of local estimates that are diffused after thal logdate
is now considerably lower, Table 1. Thiffusion only strategy
i.e., SM-NLMS (NFF), which shares estimates but not dataspai

slows down convergence even more. On the other hand, the num-

ber of diffused parameter vectors is still very low. Notetthd
SMAF strategies provide low average computational coniylex
when compared to a conventional approach.

5. CONCLUSIONS

This paper introduces diffusion strategies that featutectiee up-
date of parameter estimates and selective cooperation camien
nodes in a distributed adaptive sensor network. The coreeoprto-
posed strategies is an SM-NLMS adaptive algorithm whiclersff
benefits to three key components: reduction of node comnipatat
complexity, reduction of communication traffic (both feedfard
and feedback), and a systematic way of obtaining conserstiss e
mates. Simulation results showed significant improvemesit con-
ventional schemes, e.g., the NLMS algorithm, that updatarpater
estimates continually regardless of the benefits of suchtegd
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