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Solutions to the Exercises of Chapter 7

7A. Equal Areas in Equal Times

Correction: In the statement of Exercise 1, it should be ”centripetal” and not ”certripetal.”

1. Let t be any fixed time interval. The diagram shows the object P as having travelled from

P1 to P2 and from P3 to P4 in the same time t . Because the velocity is constant, the bases

P1P2 and P3P4 of the triangles ∆P1P2S and ∆P3P4S are equal. The diagram also shows that

the heights of the two triangles (relative to these bases) are equal as well. It follows that

∆P1P2S and ∆P3P4S have equal areas. So SP sweeps out equal areas in equal time.

It is the purpose of Exercises 2 to 5 to provide a numerical illustration of Newton’s ”equal areas

in equal time” argument in the situation of the orbit of the Earth. The area that the Earth sweeps

out (Exercise 3) is compared (in Exercise 5) to the approximation given by Newton’s triangles

(Exercise 4). Notice that the statement of Exercise 3 fails to mention that κ should be computed

in the unit AU2/day. The reader should refer to the section ”Additional Exercises for Chapter 7”

for a revised and more realistic version of these exercises. There, the Earth’s orbit is taken to be

the ellipse that it is. The solutions are no more difficult than those of the exercises below.

2. Since ∆t = 1 day and t1 = 61 days, there are 61 triangles inscribed in the sector SPQ. So in

reference to Section 7.1, n = 61.

3. Kepler’s constant for the orbit of any planet is equal to κ = At

t
where At is the area traced out

during time t. With t = 365.2422 days, we get κ = π
365.2422

≈ 0.0086 AU2 per day. The areas

of the sectors SPP1 and SPQ are approximately 0.0086 AU2 and 61(0.0086) ≈ 0.5247 AU2

respectively. (This approximation is gotten by using a more precisely computed κ and then

rounding off.) In reference to Section 7.1, A1 = area sector SPQ ≈ 0.5247 AU2.

4. By a fact established in Section 3.2, the area of the circular sector SPP1 is 1
2
(a − e)2θ. By

Exercise 3, we get that 1
2
(0.9800)2θ ≈ 0.0086. So θ ≈ 2(0.0086)

0.9604
≈ 0.0179 radians. Take PP1

to be the base of the triangle ∆SPP1 of Figure 7.25 and let h be the corresponding height.



Since sin θ
2

=
1
2
PP1

a−e
and cos θ

2
= h

a−e
, we get that the area of ∆SPP1 is equal to

1

2
(PP1)h =

(
(a − e) sin

θ

2

) (
(a − e) cos

θ

2

)
=

1

2
(a − e)2 sin θ .

For the last equality use the addition formula for the sine (refer to Exercise 6(iii) of Chapter

2 and take α = β = θ
2
). With θ ≈ 0.0179 radians, we get

∆A = area ∆SPP1 ≈ 1

2
(0.98002)(0.0179) =

1

2
(0.9604)(0.0179) ≈ 0.0086 AU2.

5. Combining the results of Exercises 2 and 4, we get n(∆A) ≈ 61(0.0086) ≈ 0.5247 AU2. (This

last approximation is gotten by using a more precisely computed ∆A and rounding off.)

Exercise 3 informed us that A1 = 0.5247 AU2. So A1 = n(∆A) up to four decimal place

accuracy in AU2.

The conclusion of Exercise 5 tells us that even with the relatively large ∆t of one day, Newton’s

approximation A1 ≈ n(∆A) of the area of the elliptical sector by inscribed triangles is accurate to

within a fraction of an AU2. The conversion of AU2 into miles2 (as suggested in the statement of

Exercise 5) provides no additional insight because the accuracy of the approximation is limited by

the accuracy of the given data, for example, e = aε = 0.0167 AU. If we were to work with greater

accuracy, for example ε = 0.01671022, then differences between A1 and n(∆A) would undoubtedly

become visible.

6. Consider an elliptical orbit with semimajor axis a and semiminor axis b and let T be

the period. Because the area of the ellipse is abπ, Kepler’s constant is equal to κ = abπ
T

.

The semiminor axis b can be computed by recalling that b =
√

a2 − e2 where the linear

eccentricity e is equal to aε with ε the astronomical eccentricity. For Mercury’s orbit,

a = 0.3871 AU, T = 0.2408 years, and ε = 0.2056. So e = (0.3871)(0.2056) = 0.0796 AU

and b =
√

a2 − e2 =
√

0.1435 = 0.3788 AU. Therefore, κ = abπ
T

= 1.9131 AU2 per year. For

Jupiter, a = 5.2028 AU, T = 11.8622 years, and ε = 0.0484. So e = (5.2028)(0.0484) =

0.2518 AU and b =
√

a2 − e2 =
√

27.0057 = 5.1967 AU. So for Jupiter, κ = abπ
T

= 7.1606 AU2

per year. A look at the “Average speed” column of Table 4.2 tells us that Mercury’s average

velocity is greater than that of Jupiter. However, because Jupiter is much farther from the

Sun, it sweeps out more area per unit time.

7. Because A(t)
t

= κ, we get A(t) = κt.

7B. Computations Related to the Inverse Square Law

8. Note that sin θ = QT
OQ

= QT and that cos θ = OP
OR

= 1
1+QR

. Following the hint, we get
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R

TO

Q

P
θ

sec θ = 1 + QR, and hence QR = sec θ − 1. So

QR

QT 2
=

1

sin2 θ
(sec θ − 1) =

1

sin2 θ
(sec θ − 1)

sec θ + 1

sec θ + 1

=
tan2 θ

sin2 θ(sec θ + 1)
=

1

cos2 θ
(

1
cos θ

+ 1
) =

(
1

1 + cos θ

) (
1

cos θ

)
.

Pushing θ to zero, we see that QR
QT 2 goes to 1

2
. Much more direct than the flow suggested by

the hint is the computation,

QR

QT 2
=

1

sin2 θ

(
1

cos θ
− 1

)
=

(
1

1 − cos2 θ

) (
1 − cos θ

cos θ

)
=

(
1

1 + cos θ

) (
1

cos θ

)
.

Applying Newton’s formula to the case of a circle of radius 1, take a = b = 1 to also get 1
2
.

A closer look at Figure 7.27 (the figure that accompanies this problem) shows that it is

not what the discussion in Section 7.2 requires. In particular, in Figure 7.10 the segment QR

is parallel to SP, but in Figure 7.27 it is not. Therefore in the context of Newton’s Inverse

Square Law, the limit computed above is the wrong limit. The correct figure is supplied

above and the correct limit computation is

QR

QT 2
=

1 − cos θ

sin2 θ
=

1 − cos θ

1 − cos2 θ
=

1

1 + cos θ
.

Pushing θ to zero, provides the required 1
2
.

9. Solve x2

a2 + y2

b2
= 1 for y to get y = ± b

a

√
a2 − x2. The foci of this ellipse are the two

points (±e, 0). The y-coordinates of the two points on the ellipse with x-coordinate e are

y = ± b
a

√
a2 − e2 = ± b2

a
. It follows that the length of the segment in question is 2b2

a
.

7C. The Satellites of Jupiter

10. Newton’s theory (see Section 7.6) predicts Kepler’s third law for Jupiter, namely that the

constant a3

T 2 , where a is the semimajor axis and T the period of the elliptical orbit, is the same
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for Jupiter’s satellites. Let’s check this:

Satellite 1 :
5.5783

42.482
≈ 173.55

1804.55
≈ 0.096

Satellite 2 :
8.8763

89.302
≈ 699.28

7974.49
≈ 0.088

Satellite 3 :
14.1593

1722
≈ 2838.56

29584
≈ 0.096

Satellite 4 :
24.9033

402.092
≈ 15443.83

161676.37
≈ 0.096

So the prediction is confirmed, except for the number 0.088 which is ”out of tune.” Why?

Page 14 of

Newton’s A Treatise of the System of the World, Dawsons of Pall Mall, London, 1969, second

edition, reprinted with an introduction by B. Cohen,

lists Flamsteed’s observations of the periods of the four satellites, in terms of days, hours,

minutes, and seconds, as 1d 18h 28′ 36′′, 3d 17h 17′ 54′′, 7d 3h 59′ 36′′, and 16d 18h 5′ 13′′.

This is the data - converted to 42.48, 89.30, 172 (171.99 is more accurate), and 402.09 hours

- that was taken for the exercise. However, in the table on page 13 of the same volume, the

period of Jupiter’s second satellite is given as 3d 13h 17′ 54′′. This is equal to 85.30 hours.

Because 8.8763

85.302 ≈ 699.28
7276.09

≈ 0.096, it seems that the entry on page 14 is a misprint.

In his analysis of the satellites of Jupiter, Newton assumes that the semimajor axes of their

orbits are equal (at least approximately) to their maximal distances from Jupiter. The potential

problem with this assumption is that if the astronomical eccentricity of the orbit is large, then the

difference between the semimajor axis and the maximal distance is large. Why? But the fact is, see

http://sse.jpl.nasa.gov/features/planets/jupiter/jupiter.html

that the orbits of the four satellites (now named Io, Europa, Ganymede, and Callisto) are all close

to being circles. Their astronomical eccentricities range from 0.002 to 0.009. The average distances

of the satellites from Jupiter range from 670,000 to 1,890,000 kilometers. One last question. Given

that he had determined G, could Cavendish have deduced the mass of Jupiter from Newton’s data?

7D. Systems of Units

Correction: Interchange Mass: and Force: in both places where they occur in bold print in

the left column of page 201.

11. For the radius of the Earth, 3950 miles × 1.61 km
mile

≈ 6360 kilometers. For that of the Moon,

1080 miles × 1.61 km
mile

≈ 1740 kilometers.

12. Since 1 slug weighs 32.17 pounds, we see that 1
32.17

≈ 0.031 slugs weigh 1 pound. So 1.3

pounds corresponds to a mass of (1.3)(0.031) ≈ 0.040 slugs.
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13. Converting meters to feet and kilograms to slugs, we get that

G ≈ 6.67 × 10−11 · 3.283

0.07
≈ (6.67 × 10−11)(504)

≈ 3360 × 10−11 ≈ 3.36 × 10−8 feet3

slug · sec2
.

7E. Applying Newton’s Formulas to the Moon

14. The formula that applies is M = 4π2a3

GT 2 . To get the mass M of the Earth, we need to

substitute data about the Moon’s orbit. Turning to Section 7.4, we will take a = 240,000

miles and T = 27.32 days. In order to use G = 6.67 × 10−11 meters3

kilograms·sec2 , we need to convert

a to meters and T to seconds. Doing this, we get a = 3.86 × 108 meters and T = 2.36 × 106

seconds. So

M ≈ 4π2(3.86 × 108)3

(6.67 × 10−11)(2.36 × 106)2
≈ 2270.50 × 1024

37.15 × 10
≈ 6.11 × 1024 kilograms.

Since the Earth is approximately a sphere of radius 3950 miles or 6360 kilometers, its volume

V is approximately,

V ≈ 4

3
πr3 ≈ 4

3
π(6.36 × 106)3 ≈ 1080 × 1018 ≈ 1.08 × 1021 meters3 .

Therefore the average density of the Earth is M
V

≈ 5.66 × 103 kilograms per cubic meter.

15. The Moon is approximately a sphere of radius 1740 kilometers. Therefore, its volume is
4
3
πr3 ≈ 4

3
π(1.74 × 106)3 ≈ 2.21 × 1019 cubic meters. Assuming that the Moon has the same

average density of 5.66 × 103 kilograms per cubic meter as the Earth, we get the estimate of

12.5 × 1022 kilograms for its mass.

More accurately than determined in Exercise 14, the mass of the Earth is 5.97×1024 kilograms

and its average density is 5.52 × 103 kilograms per cubic meter. See

http://www.jpl.nasa.gov/earth/earth−fast−facts.html .

The assumption in Exercise 15 that the density of the Moon is the same as that of the Earth turns

out to be wrong. Precise values for the average density and mass of the Moon are 3.34 × 103

kilograms per cubic meter and 7.35 × 1022 kilograms, respectively. See

http://sse.jpl.nasa.gov/features/planets/moon/moon.html

Notice that the Earth is denser than the Moon by a factor of 5.52×103

3.34×103 = 1.65. Incidentally, Newton

thought that the Moon was denser than the Earth by a factor of about 1.5. See A Treatise of the

System of the World, pages 88 − 90.
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16. Let d be the average distance from the center of the Earth to the center of the Moon and let

x be the distance from the center of the Earth to the barycenter B. By the Law of the Lever,

(6 × 1024)(x) = (7.4 × 1022)(d − x).

Using d = 240,000 miles, we get

(6.0 × 1024 + 0.074 × 1024)(x) = (7.4 × 1022)(2.4 × 105)

and hence x = 17.76×1027

6.07×1024 ≈ 2900 miles. Because the radius of the Earth is 3950 miles, the

barycenter lies approximately 1000 miles below the surface of the Earth.

Note: In using both kilograms and miles, Exercise 16 ”mixes” units. This is normally a very bad

idea. An expensive illustration of this occured when a NASA probe designed to go into orbit around

Mars was lost. Incredibly, one of the teams responsible for the probe was working with metric units

and another with American units. In Exercise 16 a ”loss” was averted because kilograms cancelled

out.

17. This is a repetition for the Moon of the calculation in Section 7.6 that provided the estimate

g ≈ 10 meters/sec2 for the Earth’s gravitational acceleration. Taking M = 7.4×1022 kilograms

and r = 1.74 × 106 meters for the mass and radius of the Moon respectively, we get

G
M

r2
≈ (6.67 × 10−11)

7.4 × 1022

(1.74 × 106)2
≈ 16.3 × 10−1 ≈ 1.63 meters/sec2

≈ 5.35 feet/sec2.

18. By Exercise 12, the basketball has a mass of 0.040 slugs. Because weight = mass × gravi-

tational acceleration, we see (using the conclusion of Exercise 17) that the basketball weighs

(0.040)(5.35) = 0.21 pounds on the Moon (compared to about 1.3 pounds on Earth).

19. The computations are the same as those in Example 15 of Section 6.4. Since a(t) = −5.35, we

get v(t) = −5.35t and y(t) = −2.68t2 + 177. It remains to solve the equation 2.68t2 = 177

for t . Doing so, we get t = 8.1 seconds. The fall took 3.3 seconds on Earth.

20. Denote the forces of the Sun and the Earth on the Moon by FS and FE respectively. In each

case, we will use the formula F = GmM
r2 with m = 7.4×1022 kilograms the mass of the Moon.

Recall that the distance from the Earth to the Sun is 93 × 106 miles or (93)(1.61) × 106

kilometers = 1.50 ×1011 meters. To estimate FS, substitute M = 2.0 × 1030 kilograms to

obtain

FS ≈ 6.67 × 10−11 (7.4 × 1022)(2.0 × 1030)

(1.5 × 1011)2
≈ 4.4 × 1020 newtons.

Substituting M = 6.0 × 1024 kilograms and r = 3.8 × 108 meters, we get

FE ≈ 6.67 × 10−11 (7.4 × 1022)(6.0 × 1024)

(3.8 × 108)2
≈ 2.1 × 1020 newtons.
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So FS is about twice as strong as FE. To understand why the Moon does not fly off in the

direction of the Sun, start by thinking of the Moon and Earth independently, both in orbit

around the Sun. This is the essential situation. The gravitational force of the Earth causes

the Moon to loop around the Earth as it proceeds around the Sun.

7F. Computing Masses and Forces

21. Since mass is proportional to volume (density being the constant of proportionality), we get

that the Earth, when shrunk to the size of a basketball, would have a mass of about

1

(5 × 107)3
· 6 × 1024 ≈ 48 kilograms ≈ 3.4 slugs.

Because a basketball has a mass of about 0.04 slugs (see the solution of Exercise 12), this

heavier “basketball” is 3.4
0.04

≈ 85 times more massive. Note by way of comparison that a

bowling ball has a mass of about 0.5 slugs.

22. Assume that Sputnik’s orbit was a circle centered at the center of the Earth. Because the

radius of the Earth is 3950 miles, the radius of the orbit was 3950 + 560 = 4510 miles. If the

data is consistent, then the constant a3

T 2 for the orbits of Sputnik and the Moon must be the

same (because both are satellites of the Earth). Let’s check this. For the Moon, a = 240,000

miles and T = 27.32 days; and for Sputnik, a = 4510 miles and T = 95 minutes = 0.066 days.

Therefore,

a3

T 2
≈ 240,0003

27.322
≈ 1.85 × 1013 miles3/day2 and

a3

T 2
≈ 45103

0.0662
≈ 2.11 × 1013 miles3/day2

for the Moon and Sputnik respectively. Given that we are working with approximations, this

seems close enough. What about Sputnik’s speed of 18,000 miles per hour? Because the length

of one orbit is 2π(4510) ≈ 28,300 miles and the period 95 minutes = 1.58 hours, Sputnik had

a speed of 28,300
1.58

≈ 17,900 miles per hour. This is also consistent with the report. To compute

the mass M of the Earth, we plug Sputnik’s data into M = 4π2a3

GT 2 . Using the conversions

4510 miles = 2.38 × 107 feet and 95 minutes = 5.70 × 103 seconds, as well as the fact that

G = 3.36 × 10−8 in American units (see Exercise 13), we get

M =
4π2a3

GT 2
≈ 4π2(2.38 × 107)3

(3.36 × 10−8)(5.70 × 103)2
≈ 4.88 × 1023 slugs.

Because 1 slug = 14.59 kilograms, this corresponds to 7.12 × 1024 kilograms. This seems

reasonably close to the 6 × 1024 kilograms derived in Exercise 14.

Corrections: Sputnik was launched on October 4th in the year 1957, not on October 5th as stated

in the exercise. It turns out, see the data supplied in Exercise 39 of the Additional Exercises, that

Sputnik’s orbit was not a circle. It orbited from about 370 to 1500 miles above the surface of the

Earth.
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23. If M is the mass of the planet, m the mass of the probe, and r the distance between them,

then the force with which the planet attracts the probe is given both by F = 8κ2m
L

1
r2 and

F = GMm
r2 , where κ and L are, respectively, Kepler’s constant and the latus rectum of the

hyperbolic trajectory. (See the Overview of the Formulas.) Therefore, M = 8κ2

GL
. In the

figure above, A is the area traced out by the probe in a certain time t. By measuring the

distance between the probe and the planet repeatedly, A and L can be estimated. So κ can

be estimated, and knowing m and G does the rest.

24. By Exercise 37 of Chapter 4, the semimajor and semiminor axes of Halley are respectively

a = 17.94 AU and b = 4.56 AU. Plugging these data into the formula of Exercise 9, we find

that L = 2b2

a
= 2.32 AU. To estimate the mass M of the Sun, we use the formula M = 4π2a3

GT 2

once more, this time with Halley’s orbital data. Because

1 AU = 9.3 × 107 miles = 1.50 × 108 kilometers = 1.50 × 1011 meters,

we get a = 17.94(1.50 × 1011) = 2.69 × 1012 meters. Also, T = 76 years = 2.4 × 109 seconds.

So

M =
4π2a3

GT 2
≈ 4π2(2.69 × 1012)3

(6.67 × 10−11)(2.4 × 109)2
≈ 20 × 1029 = 2 × 1030 kilograms .

This is in agreement with the result obtained in Section 7.6.

25. A mass of 0.25 kilograms weighs (0.25)(9.80) = 2.45 newtons. Because the “orbit” is a circle,

the formula FP = 4π2a3m
T 2

1
r2
P

applies with a = rP = 0.80 meters. The fact that there are 3

revolutions per second tells us that T = 0.33 seconds. Because m = 0.25 kilograms, it follows

that

FP ≈ 4π2a3m

T 2

1

r2
P

≈ 4π2(0.803)(0.25)

0.332

1

0.802
≈ 72.5

newtons (because everything is in M.K.S.). Notice that 72.5 newtons is equal to about

0.22(72.5) = 16.0 pounds. The object attached to the string has a mass of about 0.07(0.25) =

0.018 slugs. It weighs approximately 0.018(32.2) = 0.58 pounds.

Question: Should gravity have been considered in this problem? Have a look at ”For the

Instructor” to see what impact it has.
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7G. A Speculation of Newton

26. (The text failed to number this Exercise.) By Exercise 14, the average density of the Earth

is 5.66 × 103 kilograms per cubic meter. So the density is (5.66 × 103) 0.07
3.283 = 11.23 slugs per

cubic foot. Because the volume of a sphere of radius r is 4
3
πr3, it follows that each sphere has

a mass of 4
3
π

(
1
2

)3 · 11.23 ≈ 5.88 slugs. To compute the forces we use the formula F = GMm
r2

with G = 3.36 × 10−8 feet3

slug · sec2 . (Use the conclusion of Exercise 13). Note that the force is

greatest when the spheres are closest, in other words touch each other, and weakest at the

start of the motion, when their centers are 1.02 feet apart (as in Figure 7.28). In this last

case, the force of attraction is

F ≈ G
5.882

1.022
≈ (3.36 × 10−8)

5.882

1.022
≈ 1.12 × 10−6 pounds.

The same computation shows that when the spheres touch, the attractive force is

F ≈ G
5.882

1.002
≈ (3.36 × 108)

5.882

1.002
≈ 1.16 × 10−6 pounds.

Suppose that a constant force of 1.16× 10−6 pounds pulls the sphere on the right to the left.

By F = ma, we get −1.16 × 10−6 = 5.88a. So the acceleration a is approximately equal to

a = −1.16 × 10−6

5.88
= −0.197 × 10−6 = −1.97 × 10−7 feet/sec2.

Suppose that the force begins to act at time t = 0 and that the initial velocity of the center

of the sphere is 0. Let v(t) and x(t) be the velocity and x-coordinate of the center of the

sphere at any time t ≥ 0. Because v(t) = at,

x(t) =
a

2
t2 + x(0) = −(0.985 × 10−7)t2 + 0.51.

The sphere on the right will touch the y-axis when x(t) = 0.50. At what time will this

occur? Solving 0.50 = −(0.985 × 10−7)t2 + 0.51 for t, we get t2 = 0.01
0.985×10−7 = 10.2 × 104.

Therefore, t ≈ 320 seconds. So the sphere will touch the vertical axis of Figure 7.28 after

about 51
3

minutes. For the weaker force of −1.12×10−12 pounds, we get in the same way that

t2 = 0.01
0.95×10−7 = 10.5 × 104, and therefore that t ≈ 324 seconds. This is again approximately

51
3

minutes. Because of the symmetry of the situation, the analysis just carried out also

applies to the sphere on the left. As the spheres move from the position specified in Figure

7.28 to the terminal position where they touch each other at the vertical axis, the attractive

force on each sphere will increase from its minimum of 1.12 × 10−6 pounds to its maximum

of 1.16× 10−6 pounds. It follows that the time of the motion of each sphere will fall between

the two times computed above. So the spheres will meet in about 51
3

minutes. In particular,

Newton was wrong when he speculated that the spheres would not come together ”in less

than a month’s time.” Why couldn’t Newton simply have carried out the above computation?
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