
Solutions to the Exercises of Chapter 6

6A. Derivatives

1. The solutions make use of the differentiation formula from Section 6.1 along with the sum

and difference rules for derivatives from Section 5.5.

i. f(x) = 3
√

x = 3x
1
2 . So f ′(x) =

3

2
x− 1

2 .

ii. g(x) =
4

x5
= 4x−5. So g′(x) = −20x−6.

iii. h(x) = − 2
3
√

x
= −2x− 1

3 . So h′(x) =
2

3
x− 4

3 .

iv. f(x) =
5

x100
− 4x− 1

3 = 5x−100 − 4x− 1
3 . So f ′(x) = −500x−101 +

4

3
x− 4

3 .

v. g(x) = −2x
1
3 + 3x5 − 6. So g′(x) = −2

3
x− 2

3 + 15x4.

vi.
dy

dx
= −2

7
x− 9

7 + 120x3 − 5

12
x

2
3 .

6B. Antiderivatives and Definite Integrals

2. i. F (x) = 2 · 1

4
x4 =

1

2
x4.

ii. F (x) = 5 · x
4
3

4
3

=
15

4
x

4
3 .

iii. F (x) = 3 · x6

6
+

1

4
· x

9
7

9
7

=
1

2
x6 +

7

36
x

9
7 .

iv. F (x) =
6

5
x5 − 3

8
· x

8
3

8
3

=
6

5
x5 − 9

64
x

8
3 .

3. i.
∫ 4

0
5x2 dx = 5

3
x3

∣∣4
0

= 5
3
43 − 0 = 320

3
= 1062

3
.

∫ 6

4
5x2 dx = 5

3
x3

∣∣6
4

= 5
3
(63 − 43) = 5

3
(216 − 64) = 5

3
(152) = 760

3
= 2531

3
.

ii.
∫ 6

0
5x2 dx = 5

3
x3

∣∣6
0

= 5
3
(63) = 5

3
(216) = 1080

3
= 360 .

iii.
∫ 5

0
3
√

x dx =
∫ 5

0
3x

1
2 dx = 3 · 2

3
x

3
2

∣∣5
0

= 2x
3
2

∣∣5
0

= 2·5 3
2 ≈ 22.36 .

vi.
∫ 4

2
(4x3+2x

1
3 ) dx = (x4+2 · 3

4
x

4
3 )

∣∣4
2

= (44+ 3
2
4

4
3 )−(24+ 3

2
2

4
3 ) = 240+ 3

2
(4

4
3 −2

4
3 ) ≈ 245.74.

Note: In Exercises 4−8 the student is asked to approximate definite integrals by using the method

of Section 6.3. In each exercise there is an accuracy requirement up to a certain decimal place. In

order to simplify the computations, the solutions below round off the computations to the desired

accuracy right away. Greater accuracy could have been achieved by waiting to the end of the



calculation before rounding off to the required degree of accuracy. However, the purpose of the

exercises is the practice of the method rather than the degree of accuracy of the answer.

4. Let’s start approximating
∫ 3

4

0
1

1+x
dx by copying what was done in Section 6.3 for

∫ 1
2

0
1

1+x
dx. So∫ 3

4

0
1

1+x
dx ≈

∫ 3
4

0
(1 − x + x2 − x3 + x4 − x5) dx. Because F (x) = x− 1

2
x2+ 1

3
x3− 1

4
x4+ 1

5
x5− 1

6
x6

is an antiderivative of 1 − x + x2 − x3 + x4 − x5, we get by the Fundamental Theorem of

Calculus that
∫ 3

4

0

1

1 + x
dx ≈ F

(
3

4

)
− F (0) = F

(
3

4

)

=
3

4
− 1

2

(
3

4

)2

+
1

3

(
3

4

)3

− 1

4

(
3

4

)4

+
1

5

(
3

4

)5

− 1

6

(
3

4

)6

≈ 0.75 − 0.2813 + 0.1406 − 0.0791 + 0.0475 − 0.0297 = 0.5480.

Is this answer accurate up to four decimal places? By the ”rule of thumb” described in

Section 6.3, we need to find the first term in the pattern 3
4
,−1

2

(
3
4

)2
, +1

3

(
3
4

)3
,−1

4

(
3
4

)4
,

+1
5

(
3
4

)5
,−1

6

(
3
4

)6
, . . . , that rounds to zero and then keep adding/subtracting up to that

term. Let’s experiment: Because +1
9

(
3
4

)9 ≈ 0.0083 does not round to zero, we have to go

further; because + 1
15

(
3
4

)15 ≈ 0.0009 does not round to zero, we have to go further still; the

terms + 1
21

(
3
4

)21
,− 1

22

(
3
4

)22
, + 1

23

(
3
4

)23
all round to ±0.0001; but − 1

24

(
3
4

)24 ≈ 0.00004 finally

rounds to zero. According to the rule of thumb, the approximation process

∫ 3
4

0

1

1 + x
dx ≈ 3

4
− 1

2

(
3

4

)2

+
1

3

(
3

4

)3

− 1

4

(
3

4

)4

+
1

5

(
3

4

)5

− 1

6

(
3

4

)6

+ . . .

must be continued up to and including + 1
23

1
2

(
3
4

)23 ≈ 0.0001. In this way, we arrive at the

approximation

∫ 3
4

0

1

1 + x
dx ≈ 0.75 − 0.2813 + 0.1406 − 0.0791 + 0.0475 − 0.0297 + 0.0191

− 0.0125 + 0.0083 − 0.0056 + 0.0038 − 0.0026 + 0.0018 − 0.0013

+ 0.0009 − 0.0006 + 0.0004 − 0.0003 + 0.0002 − 0.0002 + 0.0001

− 0.0001 + 0.0001.

= 0.5595.

Recall that the rule of thumb is not completely precise (again due to roundoff error). The

natural logarithm function (see Section 10.3) provides an antiderivative of the function f(x) =
1

1+x
. This fact can be used to show that the value of the integral that is accurate up to four

decimal places is 0.5596.

Turn to
∫ 3

4

0
1

1+x2 dx next. We begin by substituting x2 for x in the approximation 1
1+x

≈
1 − x + x2 − x3 + x4 − x5 + x6 − x7 + . . . , to get

1

1 + x2
≈ 1 − x2 + x4 − x6 + x8 − x10 + x12 − x14 + . . . .

2



The fact that |x2| < 1 when |x| < 1, tells us that this approximation is valid throughout the

interval
[
0, 3

4

]
. As in the previous case, we begin by using the first six terms. So

∫ 3
4

0

1

1 + x2
dx ≈

∫ 3
4

0

(1 − x2 + x4 − x6 + x8 − x10) dx.

Because F (x) = x− 1
3
x3+ 1

5
x5− 1

7
x7+ 1

9
x9− 1

11
x11 is an antiderivative of 1−x2+x4−x6+x8−x10,

we get by the Fundamental Theorem of Calculus that

∫ 3
4

0

1

1 + x2
dx ≈ F

(
3

4

)
− F (0) = F

(
3

4

)

=
3

4
− 1

3

(
3

4

)3

+
1

5

(
3

4

)5

− 1

7

(
3

4

)7

+
1

9

(
3

4

)9

− 1

11

(
3

4

)11

≈ 0.75 − 0.1406 + 0.0475 − 0.0191 + 0.0083 − 0.0038

= 0.6423.

Is this accurate enough? Recall from the earlier analysis of
∫ 3

4

0
1

1+x
dx that + 1

23

(
3
4

)23
rounds

to 0.0001 and that − 1
24

(
3
4

)24
rounds to zero. It follows that the approximation

∫ 3
4

0

1

1 + x2
dx ≈ 3

4
− 1

3

(
3

4

)3

+
1

5

(
3

4

)5

− 1

7

(
3

4

)7

+
1

9

(
3

4

)9

− 1

11

(
3

4

)11

+ . . .

must be continued up to and including the term − 1
23

(
3
4

)23
. Doing so gives us

∫ 3
4

0

1

1 + x2
dx ≈ 0.75 − 0.1406 + 0.0475 − 0.0191 + 0.0083 − 0.0038 + 0.0018

− 0.0009 + 0.0004 − 0.0002 + 0.0001 − 0.0001

= 0.6434.

The inverse tangent function (see Section 10.5) provides an antiderivative of the function

f(x) = 1
1+x2 . This fact can be used to show that the value of the integral accurate up to four

decimal places is 0.6435.

Note: In both of the solutions above, the start was made with the first six terms of the approxima-

tion. Why six? We could have saved some energy by starting with fewer. But we need enough terms

so as to be able to recognize the pattern in the flow of the terms. This is the essential element. It

is needed in finding the first term that rounds to zero, and subsequently in computing the decimal

expansion that satisfies the accuracy requirement.

5. We will compute with three decimal places and proceed as in the solution of Exercise 4. Let’s

start by using the first five terms of the approximation x
1
2

1+x
≈ x

1
2 −x

3
2 +x

5
2 −x

7
2 +x

9
2 −x

11
2 +. . . .

In view of the fact that F (x) = 2
3
x

3
2 − 2

5
x

5
2 + 2

7
x

7
2 − 2

9
x

9
2 + 2

11
x

11
2 is an antiderivative of

3



x
1
2 − x

3
2 + x

5
2 − x

7
2 + x

9
2 , we get that

∫ 1
2

0

x
1
2

1 + x
dx ≈ F

(
1

2

)
=

2

3

(
1

2

) 3
2

− 2

5

(
1

2

) 5
2

+
2

7

(
1

2

) 7
2

− 2

9

(
1

2

) 9
2

+
2

11

(
1

2

) 11
2

= 0.236 − 0.071 + 0.025 − 0.010 + 0.004

= 0.184.

Is this the best approximation that our process can deliver? Checking the next several terms

we see that 2
13

(
1
2

) 13
2 ≈ 0.002, 2

15

(
1
2

) 15
2 ≈ 0.001, and finally that 2

17

(
1
2

) 17
2 ≈ 0. So the ap-

proximation 0.184 − 0.002 + 0.001 = 0.183 should be better. And it is. An antiderivative

of f(x) = x
1
2

1+x
can be found by the “method of substitution” (see Section 13.3) followed by

a polynomial division. This antiderivative (it involves the “inverse tangent”) can be used to

show that the value of the integral accurate up to three decimal places is 0.183.

6. We start with the first five terms of the approximation sinx ≈ x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− . . . .

Observe that

F (x) =
1

2
x2 − 1

4

x4

3!
+

1

6

x6

5!
− 1

8

x8

7!
+

1

10

x10

9!
=

x2

2
− x4

4!
+

x6

6!
− x8

8!
+

x10

10!

is an antiderivative of x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
. It follows that∫ π

0

sin x dx ≈ F (π) − F (0) =
π2

2
− π4

4!
+

π6

6!
− π8

8!
+

π10

10!
.

The term π10

10!
≈ 0.0258 is not zero when rounded to four decimals, so we must go further.

Because π14

14!
≈ 0.0001 and π15

15!
≈ 0.00002 this last term is the first to round to zero. It

follows that the addition/subtraction process must be pursued up to and including the term

+π14

14!
≈ 0.0001. Computing π2

2
− π4

4!
+ · · · + π14

14!
(each term to four decimal accuracy) we get∫ π

0

sin x dx ≈ 4.9348 − 4.0587 + 1.3353 − 0.2353 + 0.0258 − 0.0019 + 0.0001

= 2.0001.

What about the actual value? We will see later in Section 8.6 that −cos x is an antiderivative

of sin x. It follows that
∫ π

0
sin x dx = − cos π − (− cos 0) = 1 + 1 = 2.

Now on to
∫ 1

0
sin

√
x dx. We begin by replacing x by

√
x = x

1
2 in the approximation

sin x ≈ x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− . . . to get the approximation

sin x
1
2 ≈ x

1
2 − x

3
2

3!
+

x
5
2

5!
− x

7
2

7!
+

x
9
2

9!
− · · · .

Taking only the first three terms this time, we get sinx
1
2 ≈ x

1
2 − x

3
2

3!
+ x

5
2

5!
. Because F (x) =

2
3
x

3
2 − 2

5
x

5
2

3!
+ 2

7
x

7
2

5!
is an antiderivative of x

1
2 − x

3
2

3!
+ x

5
2

5!
, we see that

∫ 1

0

sin
√

x dx ≈ F (1) − F (0) =
2

3
− 2

5

1

3!
+

2

7

1

5!
≈ 0.6667 − 0.0667 + 0.0024

= 0.6024.
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The next relevant term is 2
9

x
9
2

7!
. Evaluating it at x = 1, we get 2

9
1
7!
≈ 0.00004 which rounds to

zero. This means that the process has already been carried out long enough and that 0.6024

is the required answer.

The precise answer can be obtained as follows. It can be shown that 2 sinx
1
2 −2x

1
2 cos x

1
2

is an antiderivative of sinx
1
2 . It follows that the value of the integral is 2 sin 1−2 cos 1. Check

that this value rounded to four decimal places is equal to 0.6023.

7. Recall that
( 1

2
1

)
= 1

2
,
( 1

2
2

)
= −1

8
,
( 1

2
3

)
= 1

16
,
( 1

2
4

)
= − 5

128
and check that

( 1
2
5

)
= 105

3840
= 7

256
. The

first six terms are more than sufficient to see what is going on. So will we work with the

approximation
√

1 + x ≈ 1 +
1

2
x − 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5.

The area in question is given by
∫ 5

0

√
1 + x dx. The expectation is that we will get an approx-

imation of this integral with the previous strategy. Take antiderivatives to get the terms

x, x +
1

4
x2, x +

1

4
x2 − 1

24
x3, x +

1

4
x2 − 1

24
x3 +

1

64
x4, x +

1

4
x2 − 1

24
x3 +

1

64
x4 − 1

128
x5

and finally, x + 1
4
x2 − 1

24
x3 + 1

64
x4 − 1

128
x5 + 7

6·256x
6. Evaluating them in succession at x = 5

gives us the sequence of numbers 5, 11.25, 6.04, 15.81, −8.60, and 62.61. Rather than closing

in on a number (that approximates the integral), these numbers fluctuate. What has gone

wrong? The problem is that the approximation

√
1 + x ≈ 1 +

1

2
x − 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − . . .

is valid only for |x| ≤ 1 and not for 1 < x ≤ 5. Therefore this approach cannot be used to

evaluate
∫ 5

0

√
1 + x dx. (The integral can be evaluated by the methods of Chapter 13.)

8. Because the derivative of f(x) = 1
3
x3 is f ′(x) = x2, it follows that the length of the arc in

question is equal to
∫ 1

−1

√
1 + x4 dx. Starting with the approximation

√
1 + x ≈ 1 +

(
1
2

1

)
x +

(
1
2

2

)
x2 +

(
1
2

3

)
x3 +

(
1
2

4

)
x4,

and replacing x by x4, we get
√

1 + x4 ≈ 1+
( 1

2
1

)
x4 +

( 1
2
2

)
x8 +

( 1
2
3

)
x12 +

( 1
2
4

)
x16 . Because |x| ≤ 1

in this problem, the difficulty encountered in Exercise 7 does not arise. By antidifferentiating

term by term, we see that

F (x) = x +

(
1
2

1

)
1

5
x5 +

(
1
2

2

)
1

9
x9 +

(
1
2

3

)
1

13
x13 +

(
1
2

4

)
1

17
x17

is an antiderivative of 1 +
( 1

2
1

)
x4 +

( 1
2
2

)
x8 +

( 1
2
3

)
x12 +

( 1
2
4

)
x16. As a consequence,

5



–5 1
t = 1 t = 2 t = 3t = 0

–3 –1

∫ 1

−1

√
1 + x4 dx ≈ F (1) − F (−1)

=

(
1 +

(
1
2

1

)
1

5
+

(
1
2

2

)
1

9
+

(
1
2

3

)
1

13
+

(
1
2

4

)
1

17

)

−
(
−1 −

(
1
2

1

)
1

5
−

(
1
2

2

)
1

9
−

(
1
2

3

)
1

13
−

(
1
2

4

)
1

17

)

= 2 +
2

5

(
1
2

1

)
+

2

9

(
1
2

2

)
+

2

13

(
1
2

3

)
+

2

17

(
1
2

4

)

= 2 +
2

5

1

2
− 2

9

1

8
+

2

13

1

16
− 2

17

5

128
≈ 2 + 0.200 − 0.028 + 0.010 − 0.005

= 2.177.

We use our rule of thumb to check for accuracy. A look at the pattern shows that the next

term in the approximation of the integral is 2
21

( 1
2
5

)
. Because

( 1
2
5

)
= 105

3840
, we get 2

21

( 1
2
5

)
≈ 0.003.

Since this does not round to zero (at the third decimal place), we go to 2
25

( 1
2
6

)
. Check that

( 1
2
6

)
= − 945

46080
and that 2

25

( 1
2
6

)
≈ −0.002. Repetitions of this calculation show that 2

29

( 1
2
7

)
≈ 0.001,

2
33

( 1
2
8

)
≈ −0.001, 2

37

( 1
2
9

)
≈ 0.001, and 2

41

( 1
2
10

)
≈ −0.00045. This last term, finally, rounds to

zero at the third decimal place. The required approximation is

∫ 1

−1

√
1 + x4 dx ≈ 2.177 + 0.003 − 0.002 + 0.001 − 0.001 + 0.001

= 2.179.

Is this answer reasonable? To see that it is, refer to the graph of y = x3 in Figure 5.25.

convince yourself that the graph of f(x) = 1
3
x3 is similar, but flatter. The length of the graph

between the points
(
−1,−1

3

)
and

(
1, 1

3

)
should therefore be roughly equal to the distance

between these two points. Check that it is.

6C. Moving Points

9. Differentiating twice starting with p(t) = 2t − 5, we get v(t) = 2, and a(t) = 0. Because

p(0) = −5, the point starts at x = −5. Because v(t) = 2, it moves to the right with a

constant velocity of 2 units of distance per unit time. The net force on the particle at any

time is zero, because its acceleration is zero. Its motion is sketched above.

10. Differentiating twice starting with p(t) = 2t2 + 2t + 12 we get v(t) = 4t + 2 and a(t) = 4. The

initial position of the particle is p(−10) = 200 − 20 + 12 = 192. Because v(−10) = −38, it

6



t = –10t = –1/2

t = 10t = 4

t = –6 t = –1.629t = 4.296

t = 10

moves to the left with an initial speed of 38 units of distance per unit time. It continues to

move to the left until it stops (notice the particle only stops once) at time t = −1
2

at the point

p(−1
2
) = 1

2
− 1 + 12 = 111

2
. After t = −1

2
, however, v(t) is positive so that the particle moves

to the right. It continues to move to the right with greater and greater velocity. Because the

acceleration is a positive constant, we can regard this motion to be the result of a constant

force that pushes the particle to the right. Initially, this force slows the particle’s velocity

(which is to the left); then it stops the particle (at t = −1
2
); thereafter it propels the particle

to the right. The direction of the motion is sketched below. The three points singled out on

the axis are p(−10) = 192, p(−1
2
) = 111

2
, p(4) = 52, and p(10) = 232.

11. Differentiating p(t) = t3 − 4t2 − 21t twice, we get v(t) = 3t2 − 8t − 21 and a(t) = 6t − 8.

The initial position of the particle is p(−6) = −216 − 144 − 126 = −486 and its initial

velocity is v(−6) = 135. So initially it moves to the right. Applying the quadratic formula to

3t2 − 8t − 21 = 0, tells us that it stops when

t =
8 ±

√
64 + 4 · 3 · 21

6
=

8 ± 2
√

16 + 63

6
=

4 ±
√

79

3
.

So the particle stops at t1 = 4−
√

79
3

≈ −1.629 and t2 = 4+
√

79
3

≈ 4.296. The acceleration is

a(t) = 6t − 8 = 6(t − 4
3
). So the acceleration is negative until t = 4

3
and positive thereafter.

View the motion in terms of the force that produces the acceleration. The force acts to the left

until t = 4
3

and to the right thereafter. Initially, at t = −6, the velocity is to the right and the

force is to the left. So the particle slows down and (as we have seen) stops at t1 ≈ −1.629 at

the point p(t1) ≈ −19.27. Since the force continues to act to the left, the particle now begins

to move to the left. But after t = 4
3

the force acts to the right. The particle slows down once

more, until it stops for the second time at t2 ≈ 4.296 at the point p(t2) ≈ −84.75. Because

the force is positive thereafter, the particle moves to the right forever after with greater and

greater speed. For example, when t = 10, it is at the point p(10) = 490 on the axis moving

with a velocity of v(10) = 199. The direction of the motion is sketched below. The points

singled out on the axis are p(−6) = −486, p(t1) ≈ p(−1.629) ≈ −19.27, p(t2) ≈ p(4.296) ≈
−84.75 and p(10) = 490.

12. Differentiating p(t) = 3
t

= 3t−1, we get v(t) = −3t−2 = − 3
t2

and a(t) = 6t−3 = 6
t3

. The

particle starts at p(1) = 3 with an initial velocity of v(1) = −3. So it is moving to the left. A

look at v(t) shows that it never stops. As time t > 1 continues to elapse, both p(t) and v(t)

become smaller and smaller (with p(t) always positive and v(t) always negative). This means

7



30
t = 1

t = 7t = 0t = 2t = 4

t = 0 t = 1t = 5

that the particle moves closer and closer to the origin and (hardly a surprise) becomes slower

and slower in the process. The direction of the motion is sketched below. What is the inter-

pretation in terms of an acting force?

13. a. Antidifferentiating a(t) = 6t − 12, tells us that v(t) = 3t2 − 12t + C for some constant

C. Because v(0) = 0, we see that C = 0. So v(t) = 3t2 − 12t. Antidifferentiating again,

we get p(t) = t3 − 6t2 + D for some constant D. Because p(0) = 0, we see that D = 0.

So p(t) = t3 − 6t2.

b. The particle starts at p(0) = 0 with a velocity of v(0) = 0 and a negative acceleration

of a(0) = −12. Consequently, the particle begins by moving to the left. Its velocity

v(t) = 3t(t − 4) is zero again at t = 4. The particle is now at p(4) = −32. It stops

moving to the left at this point and starts moving to the right. Note that v(t) ≥ 0 for

t > 4. So the particle continues its motion to the right with ever increasing velocity. The

analysis in terms of an acting force is in essence the same as that in Exercise 11. The

motion is diagrammed above. The points p(0) = 0, p(2) = −16, p(4) = −32, and p(7) =

49 are singled out.

14. Proceeding as in Exercise 13, we get v(t) = t2 − 6t + 5 and p(t) = 1
3
t3 − 3t2 + 5t + 6. Because

v(t) = (t− 1)(t− 5), the particle stops at t = 1 and t = 5. during the time interval from t = 0

to t = 1, v(t) is positive, so that the particle moves to the right. Having stopped at p(1) = 81
3
,

the particle moves to the left between t = 1 and t = 5 (v(t) is negative). When t = 5, the

particle stops again, this time at p(5) = 125
3

− 75 + 25 + 6 = −21
3
. Thereafter it moves to the

right with ever increasing velocity. The diagram of the motion is sketched below. The points

on the axis that are singled out are p(0) = 5, p(1) = 81
3
, and p(5) = −21

3
.

6D. Projectiles

Note: Air resistance will be ignored in all the exercises of this section, not just Exercise 17.

15. Plugging the given data into equation (6d), tells us that the maximal height is

1

2g
v2

0 sin2 ϕ0 + y0 =
1

2·32
· 402(0.342)2 + 5 =

1

64
(187.14) + 5 = 7.92 feet.

8



By equation (6a), x(t) = (40·cos 20◦)t, so we get that the apple will arrive at Hooke’s position

after t = 35
40 cos 20◦ = 35

40(0.940)
= 0.931 seconds. At this time, by equation (6b),

y(t) = −16(0.931)2 + 40(0.342)(0.931) + 5 = −13.87 + 12.74 + 5

= 3.9 feet.

So the apple will hit Hooke. By equation (6h), the speed with which it will hit Hooke is√
402 + 322(0.931)2 − 2(32)(40)(0.342)(0.931) = 41 feet/sec.

Note: Hooke was small, but it is safe to assume that he was not a midget (and taller than 3.9

feet). Hooke and Newton quarrelled over scientific matters for years. Newton closed one of his

friendlier letters to Hooke with ”if I have seen further it has only been by standing on the shoulders

of giants.” This has been widely interpreted as a nasty allusion to Hooke’s smallish stature.

16. The dropping has an initial velocity of v0 = 20 feet per second, an angle of departure ϕ0 = 30◦,

and a starting height y0 = 50. The maximal height reached by the dropping is gotten by

using equation (6d):

1

2g
v2

0 sin2 ϕ0 + y0 =
1

2 · 32
·202(0.50)2 + 50 =

1

64
(100) + 50 = 51

9

16
≈ 51.6 feet.

Let t = 0 be the instant the dropping is released and let y(t) be the height of the dropping

above the ground at any time t ≥ 0. At what time t after it is released does the dropping

reach its maximal height? When y(t) = 51 9
16

. Because y(t) = −g
2
t2 + (v0 sin ϕ0)t + y0 for

any t (see equations (6b)), we must solve

−16t2 + (20)(0.5)t + 50 = −16t2 + 10t + 50 = 51
9

16

for t. Solving −16t2 + 10t − 1 9
16

= −16t2 + 10t − 25
16

= 0 by the quadratic formula, we get

t =
−10 ±

√
100 − (4)(−16)

(
−25

16

)
−32

=
−10 ±

√
100 − 100

−32
=

5

16
≈ 0.31 sec .

To determine whether the dropping will hit the house, we first find the time t when the

dropping is a horizontal distance of 30 feet from where it started. If the dropping hits the

house, it will do so at this time. To find it, we set x(t) = 30 in x(t) = (v0 cos ϕ0) t and

solve for t. Doing this, we get 20(
√

3
2

)t = 30 and hence t = 3√
3

=
√

3 ≈ 1.73 sec. Plugging

t into second equation of (6b), we see that the height of the dropping at this time will be

y(t) = −16(
√

3)2 + 10(
√

3) + 50 ≈ 19.3 feet. Because the wall of Newton’s house is 20 feet

high, the dropping will hit the wall. To get the velocity of ”splatter” we plug t =
√

3 as well

as the given data into equation (6h), to get
√

v2
0 + g2t2 − 2g(v0 sin ϕ0)t ≈ 52.9 feet/sec.

17. In this problem y0 = 1.5 meters and ϕ0 = 70◦. We are looking for v0. Formula (6c) asserts

that any point (x, y) on the trajectory of the arrow satisfies

y =

( −g

2v2
0 cos2 ϕ0

)
x2 + (tan ϕ0) x + y0.

9



We are given that the point (25, 55) is on the trajectory. If we plug all of our information

into this equation, we should be able to solve for v0. Plugging in, we get

25 =

( −9.8

2v2
0 cos2 70◦

)
552 + (tan 70◦) 55 + 1.5 ≈ −41.89

v2
0

552 + (2.75)55 + 1.5.

Therefore, 41.89
v2
0

552 = −25 + 151.25 + 1.5 = 127.75. So v2
0 ≈ (41.89)(552)

127.75
and hence v0 ≈ 31

meters per second.

18. Here y0 = 6 feet and v0 = 120 feet per second and we are looking for ϕ0. Let’s repeat the

strategy used in Exercise 17. Plugging what we know into

y =

( −g

2v2
0 cos2 ϕ0

)
x2 + (tan ϕ0) x + y0 ,

we get 62 =
(

−32
2(1202) cos2 ϕ0

)
2402 + (tan ϕ0)240 + 6. Using the fact that 1

cos ϕ0
= sec ϕ0, we can

rewrite this as 62 = −16(4)(sec2 ϕ0)+240(tan ϕ0)+6. Because sec2 ϕ0 = 1+tan2 ϕ0, we get

62 = −16(4)(tan2 ϕ0) + 240(tan ϕ0) − 16(4) + 6. Therefore,

64(tan2 ϕ0) − 240(tan ϕ0) + 120 = 0 .

By the quadratic formula, tan ϕ0 =
240±

√
2402−4(64)(120)

2·64 . Because 240 = 16 · 15, notice that

162 = 256 is a factor of both terms under the radical. Therefore,

tan ϕ0 =
240 ± 16

√
152 − 120

2·64
=

240 ± 16
√

105

2 · 64
=

15 ±
√

105

8
≈ 3.16 or 0.594.

By pushing ”inverse tan” on your calculator, you will get either ϕ0 ≈ 72.4◦ or ϕ0 ≈ 30.7◦.

Are there two different angles with which the arrow can be shot off so as to hit the target?

Intuitively, if the arrow has the steeper trajectory, it will gain altitude earlier and will then

descend towards the cauldron as the archer intends. With the flatter trajectory it would seem

that the arrow will approach the cauldron from below and hit against its wall. To see more

convincingly that this is the case, consider the steeper trajectory ϕ0 ≈ 72.4◦. Refer to the

discussion that develops equation (6d) and note that the arrow will reach its maximal height

at time t1 = v0 sin ϕ0

g
≈ (120)(0.953)

32
≈ 3.57 seconds. Thereafter, it will descend. By one of the

equations in (6a), the arrow will reach its target (240, 62) at time t = 240
v0 cos ϕ0

≈ 240
(120)(0.302)

≈
6.62 seconds. So the flaming arrow will hit the target on its descent.

19. The relevant data is y0 = 8 feet, v0 = 22 feet per second, and ϕ0 = 45◦. Let the shot be

released at time t = 0. Suppose we can find the time t at which the bottom of the ball will

be at a height of 10 feet above the floor on its descent. (Recall that the rim of the basket

is 10 feet above the floor.) Then we can determine the horizontal distance that the ball has

traveled during this time. If the shot is taken at this distance from the basket, the ball will

go through the hoop (if, as we will assume, the ball travels in the correct direction). So the

first question is what t gives us y(t) = 10? To get the answer, take y(t) = 10 in equation

(6b) and solve for t . By substituting,

10 = −g

2
t2 + (v0 sin ϕ0)t + y0 = −16t2 + 22 ·

√
2

2
t + 8 = −16t2 + 11

√
2t + 8 .

10



By applying the quadratic formula to 16t2 − 11
√

2t + 2 = 0, we get

t =
11
√

2 ±
√

242 − 4 · 16 · 2
32

=
11
√

2 ±
√

114

32
≈ 15.56 ± 10.68

32
≈ 0.820 or 0.152 .

At t = 0.152 seconds, the ball will be 10 feet above the floor on its ascent (by the argument

already used in Exercise 18). So t = 0.820 seconds is the time of interest. By equation (6a),

x(0.820) ≈ 22 ·
√

2
2
· 0.820 ≈ 12.76. So if the shot is taken at a distance of about 123

4
feet from

basket, then the bottom of the ball will be 10 feet above the floor on its descent. To maximize

the likelihood of scoring, the player should take his jump shot from about this distance.

20. We will determine the slope of the tangent line of the trajectory at the point of impact. The

fact that the slope of a line is equal to the tangent of the angle that the line makes with

the horizontal does the rest. (An explicit formula for the angle at impact, rather than the

slope at impact requires the inverse tangent function which will be developed in Section 10.5).

Equation (6c) tells us that the trajectory of the projectile is the parabola

y =

( −g

2v2
0 cos2 ϕ0

)
x2 + (tan ϕ0)x + y0.

The slope of the tangent line at any point (x, y) on the trajectory is given by the derivative
dy
dx

= ( −g
v2
0 cos2 ϕ0

)x + tan ϕ0. Equation (6a) tells us that x = (v0 cos ϕ0)timp at the time

of impact and by equation (6e), timp =
v0 sin ϕ0+

√
v2
0 sin2 ϕ0+2gy0

g
. Therefore at impact, x =

(v0 cos ϕ0)
v0 sin ϕ0+

√
v2
0 sin2 ϕ0+2gy0

g
. So at the point of impact,

dy

dx
= −

(
1

v0 cos ϕ0

) (
v0 sin ϕ0 +

√
v2

0 sin2 ϕ0 + 2gy0

)
+ tan ϕ0

= − sin ϕ0

cos ϕ0

−
(

1

v0 cos ϕ0

) (√
v2

0 sin2 ϕ0 + 2gy0

)
+ tan ϕ0

= −
(

1

v0 cos ϕ0

) (√
v2

0 sin2 ϕ0 + 2gy0

)
.

There is another way of deriving this formula. Begin by drawing Figure 6.20 not at the time

t = 0, but at time t = timp. Doing this will show that the slope just computed is also equal to
y′(timp)

x′(timp)
. By equations (6a) and (6b),

y′(timp)

x′(timp)
=

−g timp + v0 sin ϕ0

v0 cos ϕ0

= − g timp

v0 cos ϕ0

+ tan ϕ0.

Substituting timp =
v0 sin ϕ0+

√
v2
0 sin2 ϕ0+2gy0

g
into this expression provides the formula derived

earlier.
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6E. Ballistics

21. This is an application of the range equation

R =
v2

0

2g
sin(2ϕ0) +

v0

g

√
v2

0

4
sin2(2ϕ0) + 2gy0 cos2 ϕ0 .

The data to be substituted is v0 = 1439 feet per second, ϕ0 = 0◦, and y0 = 3.6 feet (see

Section 6.6). Because sin 0◦ = 0 and cos 0◦ = 1, we get R = 1439
32

√
2(32)(3.6) ≈ 680 feet.

Figure 6.22 lists the range as 318 yards and hence 954 feet. So the observed range of the actual

shot is considerable greater than the range predicted by the theory, even though the former

occurred against air resistance and the latter assumes no air resistance. The inescapable

conclusion is that there is a problem with the data in The Artillerist’s Manual. Since the

range would seem to be easy to measure, it is likely that the angle of departure and/or the

muzzle velocity are inaccurate. Suppose, for instance, that the angle of departure and the

muzzle velocity were in fact 0.2◦ and 1480 feet per second, instead of 0◦ and 1439 feet per

second. What is the predicted range under those assumptions? This time we get

R =
14802

2(32)
sin 0.4◦ +

1480

32

√
14802

4
sin2 0.4◦ + 2(32)(3.6) cos2 0.2◦

≈ 238.93 + 46.25
√

26.69 + 230.40 ≈ 980 feet.

Now, as expected, the predicted range exceeds the actual range.

Correction: In the statement of Exercise 22 the word is ”spherical” and not ”sperical” and in the

statement of Exercise 23 the word is ”Figure” and not ”Figuree.”

22. We need to plug the data v0 = 1357 feet per second, ϕ0 = 2◦30′, and y0 = 3.6 feet into

equation (6e). Doing so, we get

timp =
v0 sin ϕ0 +

√
v2

0 sin2 ϕ0 + 2gy0

g
.

=
1357 sin 2.5◦ +

√
3572 sin2 2.5◦ + 2(32)(3.6)

32

≈ 59.19 +
√

3503.63 + 230.40

32
≈ 59.19 + 61.11

32
≈ 3.76 ≈ 3.8 seconds.

To get the predicted range we plug the same data into the range equation (see the solution

of Exercise 21) to get

R =
13572

2(32)
sin 5◦ +

1357

32

√
13572

4
sin2 5◦ + 2(32)(3.6) cos2 2.5◦

≈ 2507.70 + 42.41
√

3496.97 + 229.96 ≈ 5100 feet.
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Figure 6.22 supplies the data timp = 3 seconds and R = 840 yards = 2520 feet. Again, air

resistance and probable inaccuracies in the data explain the differences between the observed

and predicted values. See the comments in the solution of Exercise 21.

23. This is another application of the range equation

R =
v2

0

2g
sin(2ϕ0) +

v0

g

√
v2

0

4
sin2(2ϕ0) + 2gy0 cos2 ϕ0 ,

this time with v0 = 1486 feet and ϕ0 equal to 0◦, 1◦, and 5◦. We will assume that the muzzle

of the 12-pdr. field gun is the same y0 = 3.6 feet from the ground as that of the 6-pdr. field

gun. Taking ϕ0 = 0◦ we get

R =
v0

g

√
2gy0 =

1486

32

√
(64)(3.6) ≈ (46.44)(15.18) ≈ 700 feet.

With ϕ0 = 1◦ we get

R =
14862

64
sin 2◦ +

1486

32

√
14862

4
sin2 2◦ + 64(3.6) cos2 1◦

≈ 1204.14 + 46.44
√

672.38 + 230.33 ≈ 2600 feet.

Finally with ϕ0 = 5◦ we get

R =
14862

64
sin 10◦ +

1486

32

√
14862

4
sin2 10◦ + 64(3.6) cos2 5◦

≈ 5991.39 + 46.44
√

16646.31 + 228.65 ≈ 12,000 feet.

The observed ranges from Figure 6.22 are respectively, 347 yards, 662 yards, and 1663 yards,

or 1041 feet, 1986 feet, and 4,989 feet. The discrepancies between the theoretical and observed

distances are again explained by air resistance and possible inaccuracies of the data.

6F. Connections with Probability Theory

Correction: In the statement of Exercise 24 the inequality v ≤ 900 should be replaced by v ≤ 890

in the three places where it occurs. This is because in Figure 6.27 the interval under the curve from

0 to 0.6 corresponds to the range of velocities from 884 to 890, and not to those from 884 to 900.

Incidentally, the ”assumption” that the area under the entire graph is π is correct. (This follows

from facts in Section 10.5.)

24. We will compute with an accuracy to three decimal places and start with the velocity range

880 ≤ v ≤ 884. We need to compute the area under the graph of y = 1
1+x2 . To do so, we will

use the strategy in the solution of the of Exercise 4 (second problem) and the approximation

1

1 + x2
≈ 1 − x2 + x4 − x6 + x8 − x10 + . . . .
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established there. Because F (x) = x − 1
3
x3 + 1

5
x5 − 1

7
x7 + 1

9
x9 − 1

11
x11 is an antiderivative of

1 − x2 + x4 − x6 + x8 − x10, we get

∫ 0

−0.4

1

1 + x2
dx ≈ F (0) − F (−0.4) = −F (−0.4)

= −
(
−0.4 − 1

3
(−0.4)3 +

1

5
(−0.4)5 − 1

7
(−0.4)7 +

1

9
(−0.4)9 − 1

11
(−0.4)11

)

≈ −(−0.400 + 0.021 − 0.002 + 0 − 0 + 0)

≈ 0.38.

Therefore, the probability that a velocity measurement v falls in the range 880 ≤ v ≤ 884 is

approximately 0.38
π

≈ 0.12.

We turn to 884 ≤ v ≤ 890 next. Proceeding as above, we get:

∫ 0.6

0

1

1 + x2
dx ≈ F (0.6) − F (0) = F (0.6)

= 0.6 − 1

3
(0.6)3 +

1

5
(0.6)5 − 1

7
(0.6)7 +

1

9
(0.6)9 − 1

11
(0.6)11

≈ 0.600 − 0.072 + 0.016 − 0.004 + 0.001 − 0

≈ 0.54.

So the probability that a velocity measurement v falls in the range 884 ≤ v ≤ 890 is

approximately 0.54
π

≈ 0.17.

By combining the results just achieved, we see that the probability that a given observed

velocity v falls into the range 880 ≤ v ≤ 890 is approximately 0.12 + 0.17 = 0.29. In the

actual test only one of fifteen velocities fell into this range for a probability of 1
15

= 0.06. This

suggests that the curve of Figure 6.27 might not provide a good probabilistic model for this

problem. On the other hand, the 15 test firings of this analysis are too few to provide reliable

conclusions. A more serious study of the probabilities in question would have required many

more. Exercise 57 of Chapter 10 discusses an entire family of bell shaped curves that is often

used in the determination of probabilities.
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