
Solutions to the Exercises of Chapter 5

5A. Lines and Their Equations

1. The slope is −3−2
2−(−6)

= −5
8

. Since (2,−3) is a point on the line, y − (−3) = −5
8

(x − 2) is an

equation of the line in point-slope form. This simplifies to y = −5
8
x − 17

4
.

2. Using the slope-intercept form of the equation of a line, we get y = −3x + 4.

3. The point-slope form of the equation is y−(−2) = 1
2
(x−3). In simplified form it is y = 1

2
x− 7

2
.

4. Rewriting the equation as 7y = −2x− 2 and then as y = −2
7

x− 2
7

puts it into slope-intercept

form. So the slope is −2
7

and the y-intercept is −2
7

.

5B. Computing Slopes of Tangents

5. Take Q = (2 + ∆x, 4 + ∆y) on the graph. So 4 + ∆y = (2 + ∆x)2 = 4 + 4∆x + (∆x)2 and

hence ∆y = 4∆x + (∆x)2 = ∆x(4 + ∆x). Dividing both sides by ∆x, gives ∆y
∆x

= 4 + ∆x and

hence lim
∆x→0

∆y
∆x

= 4. So mP = 4.

6. Take (2 + ∆x, 8 + ∆y) on the graph. So

8 + ∆y = (2 + ∆x)3 = 23 + 3·22∆x + 3·2(∆x)2 + (∆x)3, and

∆y = 3·22∆x + 3·2(∆x)2 + (∆x)3 = ∆x(3·22 + 3·2∆x + (∆x)2).

Dividing both sides by ∆x, gives ∆y
∆x

= 3·22 + 3 · 2∆x + (∆x)2 = 12 + 6∆x + (∆x)2 and hence

lim
∆x→0

∆y
∆x

= 12. So mP = 12.

7. Take (x + ∆x, y + ∆y) on the graph. So y + ∆y = 1
x+∆x

and hence ∆y = 1
x+∆x

− y. Taking

common denominators, we get ∆y = 1−yx−y∆x
x+∆x

. Because y = 1
x
, it follows that ∆y = −y∆x

x+∆x
. So

∆y
∆x

= −y
x+∆x

. Pushing ∆x to zero, we see that lim
∆x→0

∆y
∆x

= −y
x

. So mP is equal to −y
x

.

Note: The hint supplied for the solution of Exercise 8 is not relevant.

8. Take (x + ∆x, y + ∆y) the graph. So (y + ∆y)3 = x + ∆x, and after multiplying out,

y3 + 3y2∆y + 3y∆y2 + (∆y)3 = x + ∆x. Since (x, y) is on the graph, y3 = x and hence

3y2∆y + 3y∆y2 + (∆y)3 = ∆x. Factoring out a ∆y and dividing by ∆x, now gives us that

∆y(3y2 + 3y∆y + (∆y)2) = ∆x and ∆y
∆x

(3y2 + 3y∆y + (∆y)2) = 1. So ∆y
∆x

= 1
3y2+3y∆y+(∆y)2

.

Now push ∆x to zero. In the process ∆y goes to zero, and therefore, lim
∆x→0

∆y
∆x

= 1
3y2 . Since

y3 = x, y = x
1
3 , and y2 = x

2
3 . So mP is equal to 1

3y2 or 1
3
x− 2

3 .

9. Take (x + ∆x, y + ∆y) on the ellipse. So (x+∆x)2

52 + (y+∆y)2

42 = 1. Therefore,

x2 + 2x∆x + (∆x)2

52
+

y2 + 2y∆y + (∆y)2

42
= 1,



and hence x2

52 + 2x∆x+(∆x)2

52 + 2y∆y+(∆y)2

42 + y2

42 = 1. Since x2

52 + y2

42 = 1, 2x∆x+(∆x)2

52 + 2y∆y+(∆y)2

42 =

0. So 2y∆y+(∆y)2

42 = −2x∆x+(∆x)2

52 and hence ∆y(2y + ∆y) = −42

52 ∆x(2x + ∆x). Therefore,
∆y
∆x

= −42

52
2x+∆x
2y+∆y

. Since ∆y goes to 0 when ∆x is pushed to 0, we now find that lim
∆x→0

∆y
∆x

=

−42

52
2x
2y

= −42

52
x
y
. So mP = −42

52
x
y
.

5C. Derivatives

10. Note that

f(x+∆x)−f(x)
∆x

= (x+∆x)3−x3

∆x
= x3+3x2∆x+3x(∆x)2+(∆x)3−x3

∆x
= 3x2∆x+3x(∆x)2+(∆x)3

∆x
= 3x2 + 3x∆x + (∆x)2.

Pushing ∆x to zero, tells us that f ′(x) = 3x2.

11. Observe that h(x+∆x)−h(x)
∆x

=
1

(x+∆x)2
− 1

x2

∆x
. Working with the numerator, we get

1

(x + ∆x)2
− 1

x2
=

x2 − (x + ∆x)2

(x + ∆x)2x2
=

x2 − x2 − 2x∆x − (∆x)2

(x + ∆x)2x2

=
−2x∆x − (∆x)2

(x + ∆x)2x2
=

∆x(−2x − ∆x)

(x + ∆x)2x2
.

It follows that
1

(x+∆x)2
− 1

x2

∆x
= 1

∆x
∆x(−2x−∆x)
(x+∆x)2x2 = −2x−∆x

(x+∆x)2x2 . Pushing ∆x to zero, gives us

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)

∆x
=

−2x

x2 · x2
= −2

1

x3
= −2x−3.

12. i. f ′(x) = 3x2. The slope in question is f ′(−2) = 3(−2)2 = 12.

ii. g(x) = x
1
3 . So g′(x) = 1

3
x− 2

3 . The slope is g′(−3) = 1
3
(−3)−

2
3 = 1

3
1

3
2
3

= 1

3
5
3
.

iii. f(x) = 1
x

= x−1. So f ′(x) = −x−2 = − 1
x2 . The slope is f ′(−1

3
) = − 1

1
9

= −9.

iv. f(x) = 1
x2 = x−2. So f ′(x) = −2x−3 = −2 1

x3 . The slope is f ′(−2) = −2 1
−8

= 1
4
.

13. i. f ′(x) = 0.

ii. dy
dx

= 4.

iii. f ′(x) = 14x − 5.

iv. y = 2x
1
3 + πx3. So dy

dx
= 2

3
x− 2

3 + 3πx2.

v. g(x) = 3x−1 + 3x − 6. So g′(x) = −3x−2 + 3.

vi. f(x) = 2x3 + 3x + 4 − x−2. So f ′(x) = 6x2 + 3 + 2x−3.

14. i. dy
dx

= −2x + 8. So dy
dx

= 0, when x = 4. Therefore the point in question is (4, 16).

ii. Since y = −x2 + 8x = −x(x − 8), the parabola crosses the x−axis at 0 and again at

8. In reference to Archimedes’s theorem note that the area of the inscribed triangle is
1
2
· 8·16 = 64. The area of the parabolic section is, therefore, 4

3
· 64 = 256

3
.
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5D. Definite Integrals

15. Inserting the given points on the x−axis we have

Proceeding from left to right and adding as in Examples 5.9 or 5.10, we get the following

1

2
(0.3) +

1

2.3
(0.2) +

1

2.5
(0.4) +

1

2.9
(0.5) +

1

3.4
(0.2) +

1

3.6
(0.4) =

0.150 + 0.087 + 0.160 + 0.172 + 0.059 + 0.111 = 0.739.

This is a rough approximation of the area under the graph of y = 1
x

over the interval from

2 to 4 on the x−axis. The actual value of this area can be shown to be 0.693 (up to three

decimal accuracy). This computation involves the logarithm function that will be studied in

Chapter 10.3.

16. Inserting the given points we get

Proceeding from left to right and adding, we get:

0· 1
9

+

√
1

9
·1
9

+

√
2

9
·2
9

+

√
4

9
·3
9

+

√
7

9
·4
9

+

√
11

9
·5
9

+

√
16

9
·2
9

=
1

27
(1 + 2

√
2 + 6 + 4

√
7 + 5

√
11 + 8) = 1.67.

This is a rough approximation of the area under the graph of y =
√

x from 0 to 2. The actual

value is

∫ 2

0

√
x dx =

∫ 2

0

x
1
2 dx =

2

3
x

3
2

∣∣∣∣
2

0

=
2

3

(√
2
)3

= 1.89.

17. In each case, the symbol represents the area under the curve in question as obtained by the

”addition of small rectangles” process described in the text. For
∫ 3

0
x2dx the meaning of the

symbol is illustrated by drawing the graph of y = x2 from 0 to 3 and inscribing under it

narrow rectangles as in Firgure 5.14(c). For
∫ 12

3

√
x dx, the graph is different but the task is

identical.

18. The graph of the hyperbola x2

52 − y2

42 = 1 is obtained by the process explained in Section 5.1.

It is sketched below. Solving for y, we get y = ±4
5

√
x2 − 52. So the graph of y = 4

5

√
x2 − 52

3



4

5

x 1200 – x

is the upper portion (both parts) of this graph. The definite integral
∫ 10

7
4
5

√
x2 − 52 dx is the

area under the upper part of the hyperbola that falls between 7 and 10 (as obtained by the

process of ”adding small rectangles”).

5E. The Tractrix

Correction: In Figure 5.40, delete B and then replace (x, y) by B(x, y).

19. The slope of the string is − z
x
. Note that it is negative because the string slopes downward

from left to right. By Pythagoras’s theorem, z =
√

a2 − x2. So the slope is mx = −
√

a2−x2

x
.

Since the string is always tangent to the curve, the slope is also given as f ′(x). It follows that

f ′(x) = −
√

a2−x2

x
. Recall that Perrault asked Leibniz about the exact nature of this curve.

The answer is: the graph of y = f(x). So the answer involves finding an antiderivative of
−
√

a2−x2

x
. This is not easy. See Section 10.4.

20. The formula for the length L of a curve from a point (a, c) to a point (b, d), where a ≤ b, is

L =

∫ b

a

√
1 + f ′(x)2 dx.

Since f ′(x) = −
√

a2−x2

x
and the arc runs from (c, d) to (a, 0), where 0 < c ≤ a, we get

L =
∫ a

c

√
1 + a2−x2

x2 dx =
∫ a

c

√
x2+a2−x2

x2 dx

=
∫ a

c

√
a2

x2 dx =
∫ a

c
a
x

dx.

5F. Maximum and Minimum Values

21. In view of the diagram

4



x y

the function that needs to be analyzed is

f(x) = x2(1200 − x)2 = x2(12002 − 2 · 1200x + x2)

= 12002x2 − 2 · 1200x3 + x4.

Using the rules already established, we get f ′(x) = 2 · 12002x− 6 · 1200x2 +4x3. Set f ′(x) = 0

and solve for x. Because x = 0 is not the answer to the question, we can take x �= 0. After

canceling 4x, we get x2 − 3(600)x + 2(600)2 = 0. By the quadratic formula,

x =
3(600)±

√
9(600)2−4·2(600)2

2
= 3(600)±600

2
= 1200 or 600 .

Because x �= 1200, the maximum occurs when x = 600. So to achieve the maximum, both

pieces have the same length of 600 units. This answer is the same as that of Example 5.20.

Is this surprising?

22. Subdivide the segment into two pieces x and y as shown:

Since the product xy = 300, the sum of the lengths is f(x) = x + 300
x

= x + 300x−1. So

f ′(x) = 1− 300x−2 = x2−300
x2 . So the minimum must occur at x =

√
300. This means that the

smallest length that the segment can have is
√

300 + 300√
300

= 2
√

300.

23. Let the two sides of the rectangle be x and y. Then 2x + 2y = 1000, so x + y = 500, and

y = 500 − x. The area is f(x) = xy = x(500 − x) = −x2 + 500x. So f ′(x) = 500 − 2x. It

follows that x = 250 and y = 250 give the required dimensions.

24. Let (x, y) be a random point on the parabola. The distance between (x, y) and (3, 1) is

d =
√

(x − 3)2 + (y − 1)2 =
√

(x − 3)2 + (x2 + 1 − 1)2

=
√

(x2 − 6x + 9) + (x2)2 =
√

x4 + x2 − 6x + 9.

The point (x, y) for which the distance d is a minimum is the same point for which the distance

squared d2 = x4 + x2 − 6x + 9 is a minimum. It remains, therefore, to analyze the function

f(x) = x4 + x2 − 6x + 9. Note that f ′(x) = 4x3 + 2x − 6. This polynomial has x = 1 as a

root. So x− 1 divides it. By polynomial division, 4x3 +2x− 6 = (x− 1)(4x2 +4x+6). Use of

the quadratic formula shows that 4x2 + 4x + 6 is never zero. So x = 1 is the only 0 of f ′(x).

The point on the parabola corresponding to x = 1 is (1, 2).

25. The circular base of the cylinder has radius y and hence area πy2. Because the volume of a

cylinder is base × height, it follows that the volume is

V (x) = πy2x = π(3 − x)2x = π(9 − 6x + x2)x = π(x3 − 6x2 + 9x).

Observe that V ′(x) = π(3x2−12x+9) = 3π(x2−4x+3) = 3π(x−1)(x−3). So the maximum

is achieved for x = 1 or x = 3. Since x = 3 gives V (3) = 0, it follows that V (1) = π(2)2 = 4π

is the largest volume the cylinder can have.

5
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5G. Areas and Definite Integrals

26. By the Fundamental Theorem of Calculus:∫ 3

0
x2 dx = 1

3
x3

∣∣3
0
= 27

3
− 0 = 9 .∫ −2

−8
1
x2 dx =

∫ −2

−8
x−2 dx = −x−1

∣∣−2

−8
= −(−2)−1 − (−(−8)−1) = 1

2
− 1

8
= 3

8
.∫ 12

3

√
x dx =

∫ 12

3
x

1
2 dx = 2

3
x

3
2

∣∣12
3

= 2
3

(
(
√

12)3 − (
√

3
3
)

= 2
3

(
12
√

12 − 3
√

3
)

= 2
3

(
24
√

3 − 3
√

3
)

= 2
3

(
21
√

3
)

= 14
√

3 .

The area represented by the first integral is that under the curve y = x2 and above the segment

from 0 to 3 on the x−axis; the area represented by the second integral is that under

the curve y = 1
x2 and above the segment from −8 to −2 on the x−axis; and similarly for the

third integral.

27. Solving x2 + y2 = 4 for y gives y = ±
√

4 − x2. So the graph of y =
√

4 − x2 is the upper

half of the circle and the graph of y = −
√

4 − x2 is the lower half. Convince yourself that the

definite integral

∫ 2

0

√
4 − x2 dx

represents the area of one quarter of the circle of radius 2. So
∫ 2

0

√
4 − x2 dx = 1

4
π(2)2 = π.

In the same way,
∫ a

0

√
a2 − x2 dx = 1

4
πa2.

28. Since
∫ 5

0
5
2

√
52 − x2 dx = 5

2
·
∫ 5

0

√
52 − x2 dx, we get by using Exercise 27, that

∫ 5

0
5
2

√
52 − x2 dx =

5
2
· 1

4
π52 = 125

8
π.

29. As above,
∫ a

0
b
a

√
a2 − x2 dx = b

a
·
∫ a

0

√
a2 − x2 dx = b

a
· 1

4
πa2 = 1

4
πab. Recall that x2

a2 + y2

b2
= 1 is

an ellipse. By solving this equation for y and considering positive y only, check that the graph

of y = b
a

√
a2 − x2 is the upper half of the ellipse. So the definite integral

∫ a

0
b
a

√
a2 − x2 dx is

the area of the upper right quadrant of the ellipse x2

a2 + y2

b2
= 1 .

30. i. The slope of the segment is
8
3
−0

4−0
= 8

3
1
4

= 2
3
. The slope of the tangent at any point (x, y)

on the parabola is 1
3
x. If this tangent is to be parallel to the segment, then 1

3
x = 2

3
. So

x = 2 and Q =
(
2, 2

3

)
.

ii. The slope of the line through the point Q perpendicular to OP is − 1
2
3

= −3
2
. The

6



point-slope form of the line in question is y − 2
3

= −3
2
(x − 2).

iii. Take the segment OP as base of the triangle ∆OQP . The length of the segment is√
42 +

(
8
3

)2
=

√
16 + 64

9
= 1

3

√
144 + 64 = 1

3

√
208 = 2

3

√
52 = 4

3

√
13 .

Let T be the point of intersection between the line of (ii) and the segment OP . Then QT

is the height of the triangle ∆OQP . Note that T is the intersection of the lines y = 2
3
x

and y − 2
3

= −3
2
(x− 2). Solving 2

3
x− 2

3
= −3

2
(x− 2) for x, we get 2

3
x− 2

3
= −3

2
x + 3, or

13
6
x = 11

3
. So x = 22

13
and T =

(
22
13

, 44
39

)
. The length of QT is

√(
2 − 22

13

)2

+

(
2

3
− 44

39

)2

=

√(
4

13

)2

+

(
18

3·13

)2

=

√
16·32 + 92 ·22

32 ·132

=

√
16 + 32 ·22

132
=

√
52

132
=

√
4

13
=

2√
13

.

The area of the triangle ∆OQP is 1
2
· 4

3

√
13 · 2√

13
= 4

3
.

iv. By Archimedes’s theorem, the area of the parabolic section OPQ is 4
3
· 4

3
= 16

9
. Sub-

stracting this from the triangular area under the segment OP gives

1

2
· 4 · 8

3
− 16

9
=

48

9
− 16

9
=

32

9
.

for the area under the parabola from 0 to 4.

v. By the Fundamental Theorem of Calculus, this area is also given by

∫ 4

0

1

6
x2 dx =

1

6
· 1

3
x3

∣∣∣∣
4

0

=
64

18
=

32

9
.

5H. Definite Integrals as Areas, Volumes, and Lengths of Curves

31. Notice that the rotation of this triangular region produces the required cone. The equation

of the line through 0 and (h, r) is y = r
h
x. So

V =

∫ h

0

πf(x)2 dx =

∫ h

0

π
r2

h2
x2 dx =

1

3
π

r2

h2
x3

∣∣∣∣
h

0

=
1

3
πr2h .

32. The volume is given by

V =

∫ 3

0

πf(x)2 dx =

∫ 3

0

πx dx = π

(
1

2
x2

∣∣∣∣
3

0

)
=

9

2
π .

7



3-3

33. The length of the arc on the parabola y = x2 from the point (2, 4) to the point (5, 25) is

L =

∫ 5

2

√
1 + f ′(x)2 dx =

∫ 5

2

√
1 + 4x2 dx .

Refer to the last part of Section 5.1 to see that the graph of y2 − 4x2 = 1 is a hyperbola.

Solving this equation for y shows that the upper half of this hyperbola is the graph of the

function f(x) =
√

1 + 4x2. It follows that the area under the upper half of the hyperbola from

2 to 5 is also equal to
∫ 5

2

√
1 + 4x2 dx .

34. Solve x2

52 + y2

42 = 1 for y to see that the upper half of the ellipse is the graph of f(x) =
4
5

√
52 − x2 .

i. A =
∫ 5

−5
f(x) dx =

∫ 5

−5
4
5

√
52 − x2 dx.

ii. V =
∫ 5

−5
πf(x)2 dx =

∫ 5

−5
16π
25

(52 − x2) dx.

iii. Since f ′(x) is the slope of the tangent at the point (x, y), we see from Exercise 9 that

f ′(x) = −42

52

x

y
= −42

52

x
4
5

√
52 − x2

= − 4x

5
√

52 − x2
.

It follows that the length L of the arc is given by

L =

∫ 3

1

√
1 + f ′(x)2 dx =

∫ 3

1

√
1 +

16x2

25(52 − x2)
dx.

Correction: In the statement of Exercise 35(v) the y-coordinates of the two points are incorrectly

listed. They should be 2
3

√
7 and 2

3

√
40 respectively.

35. Consider the hyperbola x2

32 − y2

22 = 1. So x2

32 = 1 + y2

22 . Therefore, x2

32 ≥ 1 and x2 ≥ 32. It

follows from the considerations towards the end of Section 5.1 that the general shape of this

hyperbola is

i. To apply Leibniz’s tangent method let (x + ∆x, y + ∆y) be a point on the graph that

lies on the same part of the curve as P . Notice that

8



(x+∆x)2

32 − (y+∆y)2

22 = 1

x2+2x∆x+(∆x)2

32 − y2+2y∆y+(∆y)2

22 = 1

x2

32 − y2

22 + 2x∆x+(∆x)2

32 − 2y∆y+(∆y)2

22 = 1

2x∆x+(∆x)2

32 − 2y∆y+(∆y)2

22 = 0
∆x(2x+∆x)

32 = ∆y(2y+∆y)
22 .

Divide both sides by ∆x to get

∆y

∆x
· 2y + ∆y

22
=

2x + ∆x

32
.

So ∆y
∆x

= 4
9

2x+∆x
2y+∆y

. Pushing ∆x to zero, gives lim
∆x→0

∆y
∆x

= 4x
9y

. This is the slope at any point

P = (x, y) on the hyperbola. Note that we need to have y �= 0.

ii. To find a function whose graph is precisely the upper half of the hyperbola, solve x2

32 − y2

22 =

1 for y. Since y2

22 = x2

32 − 1 = x2−32

32 , we get y2 = 22

32 (x2 − 32) and y = ±2
3

√
x2 − 32. Note

that y = f(x) = 2
3

√
x2 − 32 is the required function. By part (i), the derivative is equal

to f ′(x) = 4
9

x
f(x)

= 4
9

x
2
3

√
x2−32 = 2

3
x√

x2−32 .

iii. The area under the upper half of this hyperbola and over the interval from 3 to 7 is∫ 7

3

f(x) dx =

∫ 7

3

2

3

√
x2 − 32 dx .

iv. The volume of the solid obtained by rotating the region of one complete revolution about

the x-axis is ∫ 7

3

πf(x)2 dx =

∫ 7

3

4π

9
(x2 − 32) dx .

v. Using (ii), we get that the length of the hyperbolic arc from the point
(
4, 2

3

√
7
)

to the

point
(
7, 2

3

√
40

)
is

∫ 7

4

√
1 + f ′(x)2 dx =

∫ 7

4

√
1 +

4x2

9(x2 − 32)
dx .

5I. Theorems of Pappus of Alexandria

36. We need to use Pappus’s theorem A because the concern in this exercise is surface area.

Consider the circle on the right in Figure 5.45 and drop a perpendicular segment from C to

the axis shown. If the segment with the circle attached is rotated one revolution around the

axis, the circle traces out the surface of a donut. Incidentally, the surface of such a perfect

donut is called a torus in mathematics. Now turn to the specifics of the exercise and in
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particular to Figure 5.46. What was just described is now viewed from the top. The axis is

perpendicular to the page and goes through the point of intersection of the segments labeled

r and R. The circle being rotated is now being viewed from the top as the thicker black

segment; a frontal view of this circle is also shown in black (in this exercise only the boundary

counts and not the inside). Pappus’s theorem A tells us that the surface area of the donut

is the product of the circumference of the rotated circle and the distance traveled by the

centroid C of the circle. Consider Figures 5.45 (the diagram on the right) and 5.46 together.

We see that the diameter of the rotated circle is R − r, so its radius is 1
2
(R − r), and hence

its circumference is 2π
(

1
2
(R − r)

)
= π(R − r). The centroid of the circle is its center C.

Observe that the distance from C to the axis is 1
2
(R − r) + r = 1

2
(R + r). So in one complete

rotation, C traces out a circle of radius 1
2
(R + r). Because this circle has a circumference of

2π
(

1
2
(R + r)

)
= π(R+ r), we see that this is the distance traveled by the centroid C. We can

therefore conclude that

length of arc × distance traced out by centroid = π(R − r) · π(R + r) = π2(R2 − r2).

So the surface area of the torus in question is π2(R2 − r2) .

37. This is another application of Pappus’s theorem A. Refer to diagram in Figure 5.45 (on the

left). Let r be the radius of the semicircular arc and let C be its centroid. By the vertical

symmetry of the semicircular arc, its centroid C lies on the radius that is perpendicular to the

axis. Its general position is shown in the figure. But where precisely is it located? When the

semicircle is rotated one revolution about the axis a sphere of radius r is produced. Pappus’s

theorem A says that

Surface area = length of arc × distance traveled by centroid.

So 4πr2 = πr × distance traveled by centroid. Therefore, the distance traveled by centroid

is 4r . Let d be the distance from the centroid to the axis and note that the centroid traces

out a circle of radius d. So the distance traveled by the centroid is 2πd. Therefore 2πd = 4r,

and hence d = 2
π
r ≈ 0.64r. The location of the centroid of the semicircular arc has been

determined.

38. Consider the semicircular region on the left in Figure 5.45. This is no longer the arc itself,

but the entire semicircular area. Let C be the centroid of the region and let r be the radius

of the semicircle. The solid that is traced out by one full rotation of the region is a sphere of

radius r. Now apply Pappus’s theorem B. Since the volume of the sphere of radius r is 4
3
πr3,

and the area of the semicircle that is being rotated is 1
2
πr2, we now get

4

3
πr3 =

1

2
πr2 × distance traveled by C.

By the symmetry of the region, C lies somewhere on the radius that is perpendicular to the

axis. Let its distance from the axis be d and note that the distance traveled by C during

one complete rotation is 2πd. Therefore, 4
3
πr3 = 1

2
πr2 ·2πd = π2r2d . Solving for d gives us

d = 4
3π

r ≈ 0.42r .

10


