Solutions to the Exercises of Chapter 4

4A. Basic Analytic Geometry

1. The distance between $(1,1)$ and $(4,5)$ is $\sqrt{(1-4)^{2}+(1-5)^{2}}=\sqrt{9+16}=5$ and that from $(1,-6)$ to $(-1,-3)$ is $\sqrt{(1-(-1))^{2}+(-6-(-3))^{2}}=\sqrt{\left(2^{2}+3^{2}\right)}=\sqrt{13}$.
2. i. $A B=\sqrt{(6-11)^{2}+(-7-(-3))^{2}}=\sqrt{25+16}=\sqrt{41}$.
$A C=\sqrt{(6-2)^{2}+(-7-(-2))^{2}}=\sqrt{16+25}=\sqrt{41}$.
$B C=\sqrt{(11-2)^{2}+(-3-(-2))^{2}}=\sqrt{81+1}=\sqrt{82}$.
So $A B^{2}+A C^{2}=B C^{2}$. So by Pythagoras, $\triangle A B C$ is a right triangle.
ii. With the side $A B$ as base, the height is $A C$. So the area is $\frac{1}{2}(\sqrt{41})(\sqrt{41})=\frac{41}{2}$.
3. $A B=\sqrt{(-1-3)^{2}+(3-11)^{2}}=\sqrt{16+64}=\sqrt{80}$.
$B C=\sqrt{(3-5)^{2}+(11-15)^{2}}=\sqrt{4+16}=\sqrt{20}$
$A C=\sqrt{(-1-5)^{2}+(3-15)^{2}}=\sqrt{36+144}=\sqrt{180}$
So $A B+B C=\sqrt{16 \cdot 5}+\sqrt{4 \cdot 5}=4 \sqrt{5}+2 \sqrt{5}=6 \sqrt{5}=\sqrt{36 \cdot 5}=A C$.
4. i.
ii.

5. i. The x and y axes taken together.
ii. $|y|=1$ means that either $y=1$ or $y=-1$. So the graph consists of the two lines

6. This is the set of all (x, y) with either x positive and y negative, or x negative and y positive. So it is the shaded region (without the axes):

7. This is the strip (including the indicated boundaries):

8. Because $|x|<3$ is equivalent to $-3<x<3$ and $|y|<2$ is equivalent to $-2<y<2$, this consists of all points within, but not on, the rectangle below.

9. To show that the midpoint of the line segment from $P_{1}\left(x_{1}, y_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ proceed as follows: Drop perpendiculars and form the point $\left(x_{1}, y_{2}\right)$. Then use the fact that the midpoint of the segment from x_{1} to x_{2} on the x axis is $\frac{x_{1}+x_{2}}{2}$ and that from y_{1} to y_{2}

on the y axis is $\frac{y_{1}+y_{2}}{2}$. Consider the points $\left(x_{1}, \frac{y_{1}+y_{2}}{2}\right)$ and $\left(\frac{x_{1}+x_{2}}{2}, y_{2}\right)$. It remains to notice (by considering similar triangles) that

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

it is the midpoint of the segment from $P_{1}\left(x_{1}, y_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}\right)$.
10. Use of the formula developed in Exercise 9 shows that the midpoint of the line segment joining the points $(1,3)$ and $(7,15)$ is $(4,9)$ and that of the segment joining the points $(-1,6)$ and $(8,-12)$ is $\left(\frac{7}{2},-3\right)$.

4B. Circles, Parabolas, and Ellipses

11. This is a parabola opening downward. To get a precise idea of the graph, complete the squares

$$
\begin{aligned}
y & =-\left(x^{2}-3 x-4\right)=-\left(x-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}-4\right) \\
& =-\left(x-\frac{3}{2}\right)^{2}+\left(\frac{9}{4}+\frac{16}{4}\right)=\left(x-\frac{3}{2}\right)^{2}+\frac{25}{4}
\end{aligned}
$$

Note that the highest point on the parabola is $\left(\frac{3}{2}, \frac{25}{4}\right)$. It crosses the x-axis when $x-\frac{3}{2}= \pm \frac{5}{2}$,

so at $x=-1$ and 4 .
12. Dividing through by 16 , we get $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{2^{2}}=1$. This is an ellipse with semimajor axis $a=4$ and semiminor axis $b=2$. For the graph see Figure 4.28.
13. This is a parabola opening to the right starting at the origin.

14. A look at the standard equation of the circle shows that this is a circle of radius $\sqrt{7}$ centered at $(3,-5)$.
15. Note that $\frac{x^{2}}{\frac{12}{9}}+\frac{y^{2}}{\frac{12}{2}}=1$ and hence that $\frac{x^{2}}{\left(\sqrt{\frac{4}{3}}\right)^{2}}+\frac{y^{2}}{(\sqrt{6})^{2}}=1$. This is an ellipse with semimajor axis $\sqrt{6}$ and semiminor axis $\sqrt{\frac{4}{3}}$. Notice that the major axis is on the y-axis and the minor axis is on the x-axis. The general shape of the graph is obtained by rotating the ellipse of Figure 4.28 by 90°.
16.

17. The points of intersection of the line and the parabola are obtained by applying the quadratic formula to the equation $3 x^{2}+6 x-1=0$. Doing so, shows that the x coordinates of the points of intersection are $-1 \pm \frac{2}{3} \sqrt{3}$. Since the parabola opens upward, the situation is as pictured.

For $P=(x, y)$ to lie in the parabolic section, both $-1-\frac{2}{3} \sqrt{3} \leq x \leq-1+\frac{2}{3} \sqrt{3}$ and $3 x^{2}+6 x+7 \leq y \leq 8$ must hold. Why is the first of these two conditions superfluous?
18. Completing the square transforms $y=x^{2}+4 x+7$ to $y=\left(x^{2}+4 x+2^{2}\right)-2^{2}+7$ and hence to $y=(x+2)^{2}+3$. The smallest y value is 3 and it occurs when $x=-2$. So $(-2,3)$ is the lowest point on the graph. The points of intersection of the line $y=7$ and the parabola are obtained by setting $x^{2}+4 x+7=7$ and solving for x. Since $x(x+4)=0$, this shows that $x=0$ and $x=-4$. So the points of intersection are $S^{\prime}=(-4,7)$ and $S=(0,7)$. The vertex of the parabolic section is $V=(-2,3)$. The area of the triangle $\Delta S^{\prime} V S$ is $\frac{1}{2}(4)(4)=8$. Therefore by Archimedes's theorem, the area of the parabolic section $S^{\prime} V S$ is $\frac{4}{3} \cdot 8=10 \frac{2}{3}$.
19. Consider the equation $y=3 x^{2}-2 x+5$ together with the general equation

$$
y=\left(\frac{1}{2(b-c)}\right) x^{2}-\left(\frac{a}{b-c}\right) x+\left(\frac{a^{2}+b^{2}-c^{2}}{2(b-c)}\right) .
$$

In this case, $\frac{1}{2(b-c)}=3, \frac{a}{b-c}=2$, and $\frac{a^{2}+b^{2}-c^{2}}{2(b-c)}=5$. So $b-c=\frac{1}{6}, a=2(b-c)=\frac{1}{3}$, and $a^{2}+b^{2}-c^{2}=10(b-c)=\frac{5}{3}$. Since $(b+c)(b-c)=b^{2}-c^{2}=\frac{5}{3}-\frac{1}{9}=\frac{14}{9}, b+c=\frac{14}{9} \cdot 6=\frac{28}{3}=\frac{56}{6}$. Using $b-c=\frac{1}{6}$, we get $b=\frac{57}{12}$ and $c=\frac{55}{12}$. Refer to the text and conclude that the focus is $(a, b)=\left(\frac{1}{3}, \frac{57}{12}\right)$ and that the directrix is the line $y=\frac{55}{12}$.
20. This is $(x-3)^{2}+(y+1)^{2}=25$.
21. Completing the square with both variables, we get

$$
\begin{aligned}
0 & =x^{2}+y^{2}-4 x+10 y+13=x^{2}-4 x+y^{2}+10 y+13 \\
& =x^{2}-4 x+\left(2^{2}-2^{2}\right)+y^{2}+10 y+\left(5^{2}-5^{2}\right)+13 \\
& =(x-2)^{2}-2^{2}+(y+5)^{2}-5^{2}+13 .
\end{aligned}
$$

So, $(x-2)^{2}+(y+5)^{2}=-13+4+25=16=4^{2}$. So the graph is a circle. Its center is $(2,-5)$ and its radius is 4 .
22. Proceed as above and complete the square with $x^{2}+y^{2}+a x+b y+c=0$:

$$
\begin{aligned}
0 & =x^{2}+y^{2}+a x+b y+c=x^{2}+a x+y^{2}+b y+c \\
& =x^{2}+a x+\left(\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}+y^{2}+b y+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c \\
& =\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c
\end{aligned}
$$

Therefore, $\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}-c$. Since the left side cannot be negative, $\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}-c$ must be greater than or equal to 0 if there are to be any points on the graph of this equation. So the condition is $\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2} \geq c$. Let $r=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}-c}$. Since $\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=r^{2}$, we are dealing with a circle with center $\left(-\frac{a}{2},-\frac{b}{2}\right)$ and radius r.
23. Since the equation is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{2^{2}}=1$, the semimajor axis is $a=5$ and the semiminor is $b=2$. The linear eccentricity is $e=\sqrt{a^{2}-b^{2}}=\sqrt{5^{2}-2^{2}}=\sqrt{21}$, and the astronomical eccentricity is $\varepsilon=\frac{e}{a}=\frac{\sqrt{21}}{5}$.
24. Since the string is stretched it will always form a triangle with base the segment $F_{1} F_{2}$. So the base has length $2 e=2 \sqrt{a^{2}-b^{2}}$. This means that the sum of the lengths of the remaining two sides of the triangle is equal to $2 a$. Hence the sum of the distances from the tip of the pencil to the points F_{1} and F_{2} is equal to $2 a$. Therefore what is being traced out is an ellipse with focal points F_{1} and F_{2}, constant $k=2 a$, and linear eccentricity e. The rest follows from the discussion in Section 4.5, especially Figure 4.28.
25. Take a line segment of fixed length and let P be a fixed point on it. Let a and b be the lengths of the segments on the two sides of P as shown. Let the segment be in typical position in the first quadrant and put $P=(x, y)$. By similar triangles, $\frac{x}{a}=\frac{\sqrt{b^{2}-y^{2}}}{b}$. Square both sides to get

$\frac{x^{2}}{a^{2}}=\frac{b^{2}-y^{2}}{b^{2}}$. Therefore, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Check that this holds regardless of the quadrant in which the segment is placed. So the points P produced in this way coincide with the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
26. Review the basics about hyperbolas from Section 3.1. Let k be a positive constant and let e be one half the distance between F_{1} and F_{2}. So the focal points are $(-e, 0)$ and $(e, 0)$. Let $F_{1}=(e, 0)$ and $F_{2}=(-e, 0)$. The hyperbola determined by F_{1}, F_{2} and k, consists of all points $P=(x, y)$ such that $\left|P F_{1}-P F_{2}\right|=k$. A look at the diagram below shows that $2 e+P F_{2}>P F_{1}$. So $2 e>P F_{1}-P F_{2}$ and $2 e>\left|P F_{1}-P F_{2}\right|=k$. Note that $P=(x, y)$ is on

the hyperbola precisely if $P F_{1}-P F_{2}= \pm k$. This translates to

$$
\sqrt{(x-e)^{2}+y^{2}}-\sqrt{(x+e)^{2}+y^{2}}= \pm k
$$

So $\sqrt{(x-e)^{2}+y^{2}}= \pm k+\sqrt{(x+e)^{2}+y^{2}}$. After squaring both sides, etc., this equation can be transformed in successive steps to

$$
\begin{gathered}
(x-e)^{2}+y^{2}=k^{2} \pm 2 k \sqrt{(x+e)^{2}+y^{2}}+(x+e)^{2}+y^{2} \\
(x-e)^{2}=k^{2} \pm 2 k \sqrt{(x+e)^{2}+y^{2}}+(x+e)^{2} \\
x^{2}-2 e x+e^{2}=k^{2} \pm 2 k \sqrt{(x+e)^{2}+y^{2}}+x^{2}+2 e x+e^{2} \\
\pm 2 k \sqrt{(x+e)^{2}+y^{2}}=k^{2}+4 e x \\
4 k^{2}\left((x+e)^{2}+y^{2}\right)=k^{4}+8 k^{2} e x+16 e^{2} x^{2} \\
4 k^{2}\left(x^{2}+2 e x+e^{2}+y^{2}\right)=k^{4}+8 k^{2} e x+16 e^{2} x^{2} \\
4 k^{2} x^{2}+8 k^{2} e x+4 k^{2} e^{2}+4 k^{2} y^{2}=k^{4}+8 k^{2} e x+16 e^{2} x^{2} \\
4 k^{2} x^{2}-16 e^{2} x^{2}+4 k^{2} y^{2}=k^{4}-4 k^{2} e^{2} \\
4\left(k^{2}-4 e^{2}\right) x^{2}+4 k^{2} y^{2}=k^{2}\left(k^{2}-4 e^{2}\right) .
\end{gathered}
$$

Dividing through by $k^{2}\left(k^{2}-4 e^{2}\right)$, gives $\frac{4}{k^{2}} x^{2}+\frac{4}{k^{2}-4 e^{2}} y^{2}=1$. Hence $\frac{x^{2}}{\frac{k^{2}}{4}}-\frac{y^{2}}{\frac{4 e^{2}-k^{2}}{4}}=1$.
Recall that $2 e>k$. So $4 e^{2}>k^{2}$, and $4 e^{2}-k^{2}>0$. With $\mathrm{a}=\sqrt{\frac{k^{2}}{4}}=\frac{k}{2}$ and $b=\sqrt{\frac{4 e^{2}-k^{2}}{4}}=$ $\frac{1}{2} \sqrt{4 e^{2}-k^{2}}$, we now have

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The graph is given by

4C. Some Geometry and Trigonometry

27. The radian measure of θ is $\frac{s}{1}=0.693$ and $P=(\cos \theta, \sin \theta) \approx(0.769,0.639)$.
28. Since θ is equal to both 5 and $\frac{s}{2}$, we get that $s=10$.
29. Consider $\theta=17.52$. Because $\frac{17.72}{2 \pi}=2.82$, we get that $17.72=(2.82)(2 \pi)$. Since θ is positive, it follows that P_{θ} is obtained by going around the unit circle 2.82 revolutions in the clockwise
direction starting from the point $(1,0)$. Two complete revolutions return us to the starting point $(1,0)$. Since $(0.82)(2 \pi)=(3.28)\left(\frac{\pi}{2}\right)$, it remains to proceed another three quarters of a revolutions in the clockwise direction to the point $(0,-1)$, and then another $0.28 \approx \frac{1}{4}$ of a quarter revolution to locate P_{θ}. It follows that P_{θ} is in the fourth quadrant. More precision is obtained by recalling that $P_{\theta}=(\cos \theta, \sin \theta)=(\cos 17.52, \sin 17.52) \approx(0.24,-0.97)$. For $\theta=-21.83$, do a similar thing in the clockwise direction. Because $P_{\theta}=(\cos \theta, \sin \theta)=$ $(\cos -21.83, \sin -21.83) \approx(-0.99,-0.16)$. This time P_{θ} is in the third quadrant, close to the point $(-1,0)$.
30. Start with the portion of the graph of the cosine shown below on the left. First consider $0 \leq \theta \leq \frac{\pi}{2}$. As $\cos \theta$ goes from $\cos 0=1$ to $\cos \frac{\pi}{2}=0$, notice that $\sec \theta=\frac{1}{\cos \theta}$ will move

from 1 to a larger and larger positive number. At $\theta=\frac{\pi}{2}$, note that $\sec \frac{\pi}{2}=\frac{1}{\cos \frac{\pi}{2}}=\frac{1}{0}$ is not defined. The graph on the right captures this information. Then do the same thing for $-\frac{\pi}{2} \leq \theta \leq 0$ and $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$ The rest of the graph follows the pattern already established.
31. The first three identities follow from similar identities for the cosine. To verify the fourth, start with $\sin ^{2} \theta+\cos ^{2}=1$ and divide through by $\cos ^{2} \theta$.

4D. Computing Orbital Information

32. From Table 4.2, $a=5.2028 \mathrm{AU}$ and $\varepsilon=0.0484$. So the linear eccentricity is $e=\varepsilon a=0.2518$ AU and the semiminor axis is $b=\sqrt{a^{2}-e^{2}}=\sqrt{27.0691-0.0634}=\sqrt{27.0057}=5.1967 \mathrm{AU}$. After consulting Figure 4.28 observe that the greatest distance from Jupiter to the Sun is $a+e=5.4546 \mathrm{AU}$ and that the least distance is $a-e=4.951 \mathrm{AU}$. To convert to miles use the estimate $1 \mathrm{AU}=93 \times 10^{6}$ miles. For example, the greatest distance from Jupiter to the Sun is 507×10^{6} miles.
33. For Mars, $\frac{a^{3}}{T^{2}}=\frac{1.5237^{3}}{1.8809^{2}}=\frac{3.5375}{3.5378}=0.9999$. For Jupiter, $\frac{a^{3}}{T^{2}}=\frac{5.2028^{3}}{11.8622^{2}}=\frac{140.8353}{140.7118}=1.0009$. For Saturn, $\frac{a^{3}}{T^{2}}=\frac{9.53883^{3}}{29.4577^{2}}=\frac{867.9231}{867.7561}=1.0002$. The fact that all these ratios are equal to one is directly related to the definition of the units used. By definition, 1 AU is the semimajor axis of the Earth and 1 year is equal to the period of the Earth's orbit. So in these units, the ratio $\frac{a^{3}}{T^{2}}$ is equal to 1 for the Earth. By Kepler's law all the ratios $\frac{a^{3}}{T^{2}}$ must be equal to 1 (or more
accurately, close to 1) in these units.
34. i. The formula for the area of a circular sector of radius r and angle θ is $\frac{1}{2} r^{2} \theta$. The radian measure of the angle $\angle P S P^{\prime}$ is $\frac{\operatorname{arc} P P^{\prime}}{a-e}$. It follows that the area of the circular sector $P S P^{\prime}$ is $\frac{1}{2}(a-e)^{2} \frac{\operatorname{arc} P P^{\prime}}{a-e}=\frac{1}{2}(a-e)\left(\operatorname{arc} P P^{\prime}\right)$. The same computation verifies the other formula.
ii. Let t be this common time. By Kepler's second law and part (i), $\frac{1}{2}(a-e)\left(\operatorname{arc} P P^{\prime}\right)=$ $\frac{1}{2}(a+e)\left(\operatorname{arc} Q Q^{\prime}\right)$. Since $v_{P} t=\operatorname{arc} P P^{\prime}$ and $v_{A} t=\operatorname{arc} Q Q^{\prime}$, it follows that $\frac{1}{2}(a-e) v_{P} t=$ $\frac{1}{2}(a+e) v_{A} t$. The formula $\frac{v_{P}}{v_{A}}=\frac{a+e}{a-e}$ follows. Dividing the numerator and denominator by a, shows that $\frac{v_{P}}{v_{A}}=\frac{1+\varepsilon}{1-\varepsilon}$. A look at Table 4.2 tells us that its value for the Earth is $\frac{1+0.0167}{1-0.0167}=\frac{1.0167}{0.9833}=1.0340$. For Saturn the value is $\frac{1+0.0557}{1-0.0557}=\frac{1.0557}{0.9443}=1.1180$.
35. i. Counting days, hours, and minutes, shows that $t_{v e}=75.6313$ days for 1995. Adding the length of spring, i.e., 92.7639 days to $t_{v e}=75.6313$, gives us $t_{s s}=168.3952$ days for 1995.
ii. For $t_{v e}$, the strategy of Section 4.8 gives $\beta_{1}=1.3011$ and then $\beta=\beta_{3}=\beta_{4}=1.3173$.
iii. Making the indicated substitutions gives $r=0.9958 \mathrm{AU}$ and $\alpha=1.3335$ radians.
iv. For $t_{s s}$, the strategy of Section 4.8 gives $\beta_{1}=2.8969$ and then $\beta=\beta_{3}=\beta_{4}=2.9009$. It follows that $r=1.0162 \mathrm{AU}$ and $\alpha=2.9048$ radians.
36. Since $e=0$, we find that $a=b$. So the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=a^{2}$ coincide. In reference to Figure 4.34, this means that the focus S of the ellipse is the center O of the circle and that the points P and P_{0} coincide. So the segment $S P$ coincides with the segment $O P_{0}$. It follows that $\alpha=\beta, r=a$, and by Kepler's formula (or a direct argument), that $\alpha=\beta=\frac{2 \pi t}{T}$. The method of successive approximations of Section 4.8 is not needed because $r=a$ and $\alpha=\beta$ has an explicit expression in terms of t.

4E. The Orbit of Halley's Comet

37. By Kepler's third law $\frac{a^{3}}{T^{2}}=1$ in the units $A U$ and years because this ratio is 1 for the Earth. Since $T=76$ years for Halley, we get $a^{3}=T^{2}=76^{2}$. It follows that $a=76^{2 / 3}=17.94 \mathrm{AU}$. Since the minimum distance between Halley and the Sun is $a-e=d=0.59 \mathrm{AU}$, where e is the linear eccentricity, we see that $e=a-d=17.94-0.59=17.35$ AU. Halley's semiminor axis is $b=\sqrt{a^{2}-e^{2}}=4.56 \mathrm{AU}$ and its astronomical eccentricity is $\varepsilon=\frac{e}{a}=\frac{17.35}{17.94}=0.967$. Halley's greatest distance from the Sun is $a+e=17.94+17.35=35.29 \mathrm{AU}$. The ratio $\frac{v_{P}}{v_{A}}$ for Halley is $\frac{v_{P}}{v_{A}}=\frac{17.94+17.35}{17.94-17.35}=\frac{35.29}{0.59} \approx 60$.
38. By assumption and Figure 4.39, the Earth's orbit is a circle with center $(e, 0)$ and radius 1. So $(x-e)^{2}+y^{2}=1$ is an equation of the orbit. To find the x-coordinates of the points H_{1} and H_{2} of Figure 4.40, we need to solve the equations $(x-e)^{2}+y^{2}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for
x. By substituting and taking common denominators, we get

$$
1=\frac{x^{2}}{a^{2}}+\frac{1-(x-e)^{2}}{b^{2}}=\frac{b^{2} x^{2}+a^{2}-a^{2} x^{2}+2 a^{2} e x-a^{2} e^{2}}{a^{2} b^{2}}=\frac{a^{2}-e^{2} x^{2}+2 a^{2} e x-a^{2} e^{2}}{a^{2} b^{2}}
$$

So $a^{2} b^{2}=a^{2}-e^{2} x^{2}+2 a^{2} e x-a^{2} e^{2}$ and $e^{2} x^{2}-2 a^{2} e x+a^{2} e^{2}-a^{2}+a^{2} b^{2}=0$. Because $a^{2} e^{2}-a^{2}+a^{2} b^{2}$ simplifies to $a^{2}\left(e^{2}-1+b^{2}\right)=a^{2}\left(a^{2}-1\right)$, we get by using the quadratic formula that

$$
x=\frac{2 a^{2} e \pm \sqrt{4 a^{4} e^{2}-4 e^{2} a^{2}\left(a^{2}-1\right)}}{2 e^{2}}=\frac{2 a^{2} e \pm 2 a e \sqrt{a^{2}-\left(a^{2}-1\right)}}{2 e^{2}}=\frac{a^{2} \pm a}{e} .
$$

Because $\frac{a^{2}+a}{e}=\frac{a^{2}}{e}+\frac{a}{e}>\frac{a^{2}}{a}=a$, it is not possible for $x=\frac{a^{2}+a}{e}$. (Since $x=a$ is the x-intercept of the ellipse in Figure 4.40.) So we can conclude that $x=\frac{a^{2}-a}{e}=\frac{a(a-1)}{e}$. So $x=\frac{17.94(16.94)}{17.35}=17.52 \mathrm{AU}$. Inserting this value of x into $y^{2}=1-(x-e)^{2}$, gives us $y^{2}=$ $1-(17.52-17.35)^{2}=1-(0.17)^{2}=1-0.03=0.97$. It follows that the y-coordinates of the points H_{1} and H_{2} are 0.98 and -0.98 respectively. To sketch a more accurate version of Figure 4.40, place H_{1} and H_{2} in such a way that the vertical segment $H_{1} H_{2}$ is 0.17 units to the right of the Sun S. Notice that the trajectory of Halley (within the Earth's orbit) is much "steeper" than suggested in the figure.
39. The value of r is equal to the length of the segment $S P=S H_{1}$. Since H_{1} lies on the circle with center S and radius 1 AU (in other words on the Earth's orbit), it follows that $r=1$. Because 0.98 is the y -coordinate of H_{1}, notice that $\sin \alpha=\frac{0.98}{1}=0.98$. Using the inverse sine button of your calculator, will give you $\alpha=1.37$ (in radians). Now use Gauss's formula $\tan \frac{\alpha}{2}=\sqrt{\frac{1+\varepsilon}{1-\varepsilon}} \tan \frac{\beta}{2}$ to compute β. By Exercise $37, \varepsilon=\frac{e}{a}=\frac{17.35}{17.94}=0.967$. So

$$
\tan \frac{\beta}{2}=\sqrt{\frac{1-\varepsilon}{1+\varepsilon}} \tan \frac{\alpha}{2}=(0.13)(0.82)=0.11
$$

By taking an inverse $\tan , \frac{\beta}{2}=0.11$. So $\beta=0.22$. Inserting what we already know into Kepler's formula $\beta-\varepsilon \sin \beta=\frac{2 \pi t}{T}$, tells us that $0.22-(0.967)(0.22)=\frac{2 \pi t}{76}$. Solving for t, we get $t \approx \frac{(0.01)(76)}{2 \pi}=0.12$ years. We have shown that Halley requires about 0.12 years or 44 days to move from perihelion to H_{1}. A repetition of this discussion (or an appeal to symmetry) will show that Halley requires the same number of days to move from H_{2} to perihelion. It follows that Halley remains inside the Earth's orbit for about 88 days.
40. Recall that in general $\left|\beta-\beta_{i}\right| \leq \varepsilon^{i}$. To insure that $\left|\beta-\beta_{i}\right| \leq 0.0002$, we need to achieve $\varepsilon^{i} \leq 0.0002$. For Halley, $\varepsilon=0.967$. To be on the safe side we will take $\varepsilon=0.968$. (There is no information about the fourth decimal place.) By squaring again and again, we see that $\varepsilon^{256}<0.000243$. So this gets us close. Multiplying by 0.968 six more times shows that $\varepsilon^{262}<0.0002$.
41. This task is left to the student.

4F. More Trigonometry and Gauss's Formula

42. Enough hints have been supplied.
43. The first part is obvious. For the second, use $\sin ^{2} \varphi+\cos ^{2} \varphi=1$.
44. The equality $\tan ^{2} \frac{\alpha}{2}=\frac{1-\cos \alpha}{1+\cos \alpha}$ is verified by using the equalities $2 \cos ^{2} \varphi=1+\cos 2 \varphi$ and $2 \sin ^{2} \varphi=1-\cos 2 \varphi$ with $\varphi=\frac{\alpha}{2}$. That $\frac{1-\cos \alpha}{1+\cos \alpha}=\frac{1+\varepsilon}{1-\varepsilon} \frac{1-\cos \beta}{1+\cos \beta}$ follows by use of $\cos \alpha=\frac{\cos \beta-\varepsilon}{1-\varepsilon \cos \beta}$. That $\tan ^{2} \frac{\beta}{2}=\frac{1-\cos \beta}{1+\cos \beta}$, uses $2 \cos ^{2} \varphi=1+\cos ^{2} \varphi$ and $2 \sin ^{2} \varphi=1-\cos 2 \varphi$ again, this time with $\varphi=\frac{\beta}{2}$. So

$$
\tan ^{2} \frac{\alpha}{2}=\frac{1+\varepsilon}{1-\varepsilon} \tan ^{2} \frac{\beta}{2} .
$$

Now suppose that $0 \leq \beta<\pi$. Refer to the basic diagram from Kepler's discussion and notice that $0 \leq \alpha<\pi$. So $0 \leq \frac{\beta}{2}<\frac{\pi}{2}$ and $0 \leq \frac{\alpha}{2}<\frac{\pi}{2}$. Refer to the graph of the tangent and notice that $\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ are both positive. So by taking square roots, $\tan \frac{\alpha}{2}=\sqrt{\frac{1+\varepsilon}{1-\varepsilon}} \tan \frac{\beta}{2}$ in this case. If $\pi<\beta<2 \pi$, then $\pi<\alpha<2 \pi$. Now both $\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ are negative. So again, $\tan \frac{\alpha}{2}=\sqrt{\frac{1+\varepsilon}{1-\varepsilon}} \tan \frac{\beta}{2}$. If $\beta=\pi$, then by the basic diagram from Kepler's discussion $\alpha=\pi$. So neither $\tan \frac{\alpha}{2}$ and $\tan \frac{\beta}{2}$ are defined in this case. (Have a look at the graph of the tangent.) This presents no problem since the basic point is to determine α in terms of β.

4G. A study of Kepler's Formulas

Correction: In Exercise 45 the formula $\tan \alpha=\frac{b \sin \beta}{a(\cos \beta-\varepsilon)}$ is incorrectly written as $\tan \alpha=$ $\frac{b \sin \beta}{a(\cos \beta-e)}$.
45. In the new figure, P and P_{0} both lie below the x-axis, X is on the left of O, and x is negative. Check that $S X$ is equal to $e-x$ in this situation also. Let $\alpha^{\prime}=\angle X S P$ and $\beta^{\prime}=\angle X O P_{0}$ and notice that $\alpha=\alpha^{\prime}+\pi$ and $\beta=\beta^{\prime}+\pi$. By use of the Examples 4.11 and 4.12 , the verifications

of the equations $r=a(1-\varepsilon \cos \beta)$ and $\tan \alpha=\frac{b \sin \beta}{a(\cos \beta-\varepsilon)}$ go through virtually unchanged. Only Kepler's equation remains. The sectors referred to in the argument below, as well as the related sections, will be those determined by the angles $2 \pi-\alpha$ and $2 \pi-\beta$ rather than α and β. In reference to the circle,

Area section $P_{0} X N=$ Area sector $P_{0} O N+$ Area $\Delta P_{0} X O$.
Because the sector $P_{0} O N$ is determined by the angle $2 \pi-\beta$, its area is equal to $\frac{1}{2} a^{2}(2 \pi-\beta)$. The area of the triangle $\Delta P_{0} X O$ is $\frac{1}{2}(-x)\left(-y_{0}\right)=\frac{1}{2}(-x)(-a \sin \beta)$. So

$$
\text { Area section } P_{0} X N=\frac{1}{2} a^{2}(2 \pi-\beta)+\frac{1}{2} x a \sin \beta .
$$

Now turn to the ellipse. By Cavalieri's principle,

$$
\text { Area section } P X N=\frac{b}{a}\left(\frac{1}{2} a^{2}(2 \pi-\beta)+\frac{1}{2} x a \sin \beta\right)=\frac{1}{2} b a(2 \pi-\beta)+\frac{1}{2} x b \sin \beta .
$$

Note next that A_{t} is equal to the area of the full ellipse, minus the area of the section just computed, plus the area of $\triangle P X S$. So

$$
\begin{aligned}
A_{t} & =a b \pi-\frac{1}{2} b a(2 \pi-\beta)-\frac{1}{2} x b \sin \beta+\frac{1}{2}(e-x)(-y) \\
& =\frac{1}{2} a b \beta-\frac{1}{2} x b \sin \beta-\frac{1}{2}(e-x) b \sin \beta=\frac{1}{2} a b \beta-\frac{1}{2} e b \sin \beta \\
& =\frac{1}{2} a b(\beta-\varepsilon \sin \beta)
\end{aligned}
$$

The rest of the argument is identical to the one in the text. Alternatively, the argument in the text can be retained with the following understanding: Let the sector $P_{0} O N$ be that determined by β, the section $P_{0} X N$ to be that with perimeter the circular arc from N to A to P_{0} and the segments $P_{0} X$ and $X N$, and let the elliptical section $P X N$ be that with perimeter the elliptical arc from N to A to P, and the segments $P X$ and $X N$.
46. Let α, β, and t be the parameters for the same position in the first orbit. In going from the first orbit to the second, 2π is added to both α and β and T is added to t. Observe that a, b, ε, and r are the same for both orbits. So the question is as to whether the formulas are valid with $\alpha^{\prime}=\alpha+2 \pi$ in place of $\alpha, \beta^{\prime}=\beta+2 \pi$ in place of β, and $t^{\prime}=t+T$ in place of t. This follows quickly from the identities in Examples 4.11 and 4.12. For example,

$$
\beta^{\prime}-\varepsilon \sin \beta^{\prime}=\beta+2 \pi-\varepsilon \sin \beta=\frac{2 \pi t}{T}+2 \pi=\frac{2 \pi t+2 \pi T}{T}=\frac{2 \pi t^{\prime}}{T} .
$$

