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Solutions to the Exercises of Chapter 4

4A. Basic Analytic Geometry

1. The distance between (1, 1) and (4, 5) is
√

(1 − 4)2 + (1 − 5)2 =
√

9 + 16 = 5 and that from

(1,−6) to (−1,−3) is
√

(1 − (−1))2 + (−6 − (−3))2 =
√

(22 + 32) =
√

13.

2. i. AB =
√

(6 − 11)2 + (−7 − (−3))2 =
√

25 + 16 =
√

41.

AC =
√

(6 − 2)2 + (−7 − (−2))2 =
√

16 + 25 =
√

41.

BC =
√

(11 − 2)2 + (−3 − (−2))2 =
√

81 + 1 =
√

82.

So AB2 + AC2 = BC2. So by Pythagoras, ∆ABC is a right triangle.

ii. With the side AB as base, the height is AC. So the area is 1
2

(√
41

) (√
41

)
= 41

2
.

3. AB =
√

(−1 − 3)2 + (3 − 11)2 =
√

16 + 64 =
√

80.

BC =
√

(3 − 5)2 + (11 − 15)2 =
√

4 + 16 =
√

20

AC =
√

(−1 − 5)2 + (3 − 15)2 =
√

36 + 144 =
√

180

So AB + BC =
√

16 · 5 +
√

4 · 5 = 4
√

5 + 2
√

5 = 6
√

5 =
√

36 · 5 = AC.

4. i.

ii.

5. i. The x and y axes taken together.
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ii. |y| = 1 means that either y = 1 or y = −1. So the graph consists of the two lines

6. This is the set of all (x, y) with either x positive and y negative, or x negative and y positive.

So it is the shaded region (without the axes):

7. This is the strip (including the indicated boundaries):

8. Because |x| < 3 is equivalent to −3 < x < 3 and |y| < 2 is equivalent to −2 < y < 2, this

consists of all points within, but not on, the rectangle below.
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9. To show that the midpoint of the line segment from P1(x1, y1) to P2(x2, y2) is
(

x1+x2

2
, y1+y2

2

)
proceed as follows: Drop perpendiculars and form the point (x1, y2). Then use the fact that

the midpoint of the segment from x1 to x2 on the x axis is x1+x2

2
and that from y1 to y2

on the y axis is y1+y2

2
. Consider the points

(
x1,

y1+y2

2

)
and

(
x1+x2

2
, y2

)
. It remains to notice

(by considering similar triangles) that

(
x1 + x2

2
,
y1 + y2

2

)

it is the midpoint of the segment from P1(x1, y1) to P2(x2, y2).

10. Use of the formula developed in Exercise 9 shows that the midpoint of the line segment joining

the points (1, 3) and (7, 15) is (4, 9) and that of the segment joining the points (−1, 6) and

(8,−12) is
(

7
2
,−3

)
.

4B. Circles, Parabolas, and Ellipses

11. This is a parabola opening downward. To get a precise idea of the graph, complete the squares

y = −(x2 − 3x − 4) = −(x − 3x + (
3

2
)2 − (

3

2
)2 − 4)

= −(x − 3

2
)2 + (

9

4
+

16

4
) = (x − 3

2
)2 +

25

4
.

Note that the highest point on the parabola is (3
2
, 25

4
). It crosses the x-axis when x− 3

2
= ±5

2
,

so at x = −1 and 4.

3



(2, 1)

(2, -1)

y = –x 2

y = x   + 12

–1 + 3_2
3–1 – 3_2

3

y = 8

12. Dividing through by 16, we get x2

42 + y2

22 = 1. This is an ellipse with semimajor axis a = 4 and

semiminor axis b = 2. For the graph see Figure 4.28.

13. This is a parabola opening to the right starting at the origin.

14. A look at the standard equation of the circle shows that this is a circle of radius
√

7 centered

at (3,−5).

15. Note that x2

12
9

+ y2

12
2

= 1 and hence that x2(√
4
3

)2 + y2

(
√

6)2
= 1. This is an ellipse with semimajor

axis
√

6 and semiminor axis
√

4
3
. Notice that the major axis is on the y-axis and the minor

axis is on the x-axis. The general shape of the graph is obtained by rotating the ellipse of

Figure 4.28 by 90◦.

16.

17. The points of intersection of the line and the parabola are obtained by applying the quadratic

formula to the equation 3x2 +6x−1 = 0. Doing so, shows that the x coordinates of the points

of intersection are −1 ± 2
3

√
3. Since the parabola opens upward, the situation is as pictured.

4



For P = (x, y) to lie in the parabolic section, both −1 − 2
3

√
3 ≤ x ≤ −1 + 2

3

√
3 and

3x2 + 6x + 7 ≤ y ≤ 8 must hold. Why is the first of these two conditions superfluous?

18. Completing the square transforms y = x2 + 4x + 7 to y = (x2 + 4x + 22) − 22 + 7 and hence

to y = (x + 2)2 + 3. The smallest y value is 3 and it occurs when x = −2. So (−2, 3) is

the lowest point on the graph. The points of intersection of the line y = 7 and the parabola

are obtained by setting x2 + 4x + 7 = 7 and solving for x. Since x(x + 4) = 0, this shows

that x = 0 and x = −4. So the points of intersection are S ′ = (−4, 7) and S = (0, 7). The

vertex of the parabolic section is V = (−2, 3). The area of the triangle ∆S ′V S is 1
2
(4)(4) = 8.

Therefore by Archimedes’s theorem, the area of the parabolic section S ′V S is 4
3
· 8 = 102

3
.

19. Consider the equation y = 3x2 − 2x + 5 together with the general equation

y =

(
1

2(b − c)

)
x2 −

(
a

b − c

)
x +

(
a2 + b2 − c2

2(b − c)

)
.

In this case, 1
2(b−c)

= 3, a
b−c

= 2, and a2+b2−c2

2(b−c)
= 5. So b − c = 1

6
, a = 2(b − c) = 1

3
, and

a2 +b2−c2 = 10(b−c) = 5
3
. Since (b+c)(b−c) = b2−c2 = 5

3
− 1

9
= 14

9
, b+c = 14

9
·6 = 28

3
= 56

6
.

Using b − c = 1
6
, we get b = 57

12
and c = 55

12
. Refer to the text and conclude that the focus is

(a, b) =
(

1
3
, 57

12

)
and that the directrix is the line y = 55

12
.

20. This is (x − 3)2 + (y + 1)2 = 25.

21. Completing the square with both variables, we get

0 = x2 + y2 − 4x + 10y + 13 = x2 − 4x + y2 + 10y + 13

= x2 − 4x + (22 − 22) + y2 + 10y + (52 − 52) + 13

= (x − 2)2 − 22 + (y + 5)2 − 52 + 13.

So, (x− 2)2 +(y +5)2 = −13+4+25 = 16 = 42. So the graph is a circle. Its center is (2,−5)

and its radius is 4.

22. Proceed as above and complete the square with x2 + y2 + ax + by + c = 0:

0 = x2 + y2 + ax + by + c = x2 + ax + y2 + by + c

= x2 + ax +
(a

2

)2

−
(a

2

)2

+ y2 + by +

(
b

2

)2

−
(

b

2

)2

+ c

=
(
x +

a

2

)2

+

(
y +

b

2

)2

−
(a

2

)2

−
(

b

2

)2

+ c.

Therefore,
(
x + a

2

)2
+

(
y + b

2

)2
=

(
a
2

)2
+

(
b
2

)2 − c. Since the left side cannot be negative,(
a
2

)2
+

(
b
2

)2 − c must be greater than or equal to 0 if there are to be any points on the graph

of this equation. So the condition is
(

a
2

)2
+

(
b
2

)2 ≥ c. Let r =
√(

a
2

)2
+

(
b
2

)2 − c. Since(
x + a

2

)2
+

(
y + b

2

)2
= r2, we are dealing with a circle with center

(
−a

2
,− b

2

)
and radius r.
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23. Since the equation is x2

52 + y2

22 = 1, the semimajor axis is a = 5 and the semiminor is b = 2.

The linear eccentricity is e =
√

a2 − b2 =
√

52 − 22 =
√

21, and the astronomical eccentricity

is ε = e
a

=
√

21
5

.

24. Since the string is stretched it will always form a triangle with base the segment F1F2. So

the base has length 2e = 2
√

a2 − b2. This means that the sum of the lengths of the remaining

two sides of the triangle is equal to 2a. Hence the sum of the distances from the tip of the

pencil to the points F1 and F2 is equal to 2a. Therefore what is being traced out is an ellipse

with focal points F1 and F2, constant k = 2a, and linear eccentricity e. The rest follows from

the discussion in Section 4.5, especially Figure 4.28.

25. Take a line segment of fixed length and let P be a fixed point on it. Let a and b be the lengths

of the segments on the two sides of P as shown. Let the segment be in typical position in the

first quadrant and put P = (x, y). By similar triangles, x
a

=

√
b2−y2

b
. Square both sides to get

x2

a2 = b2−y2

b2
. Therefore, x2

a2 + y2

b2
= 1. Check that this holds regardless of the quadrant in

which the segment is placed. So the points P produced in this way coincide with the ellipse
x2

a2 + y2

b2
= 1.

26. Review the basics about hyperbolas from Section 3.1. Let k be a positive constant and let

e be one half the distance between F1 and F2. So the focal points are (−e, 0) and (e, 0).

Let F1 = (e, 0) and F2 = (−e, 0). The hyperbola determined by F1, F2 and k, consists of

all points P = (x, y) such that |PF1 − PF2| = k. A look at the diagram below shows that

2e + PF2 > PF1. So 2e > PF1 − PF2 and 2e > |PF1 − PF2| = k. Note that P = (x, y) is on

6
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a

a

b

y  = -    x  _b
a

x

y

the hyperbola precisely if PF1 − PF2 = ±k. This translates to√
(x − e)2 + y2 −

√
(x + e)2 + y2 = ±k.

So
√

(x − e)2 + y2 = ±k +
√

(x + e)2 + y2. After squaring both sides, etc., this equation can

be transformed in successive steps to

(x − e)2 + y2 = k2 ± 2k
√

(x + e)2 + y2 + (x + e)2 + y2

(x − e)2 = k2 ± 2k
√

(x + e)2 + y2 + (x + e)2

x2 − 2ex + e2 = k2 ± 2k
√

(x + e)2 + y2 + x2 + 2ex + e2

±2k
√

(x + e)2 + y2 = k2 + 4ex

4k2 ((x + e)2 + y2) = k4 + 8k2ex + 16e2x2

4k2 (x2 + 2ex + e2 + y2) = k4 + 8k2ex + 16e2x2

4k2x2 + 8k2ex + 4k2e2 + 4k2y2 = k4 + 8k2ex + 16e2x2

4k2x2 − 16e2x2 + 4k2y2 = k4 − 4k2e2

4 (k2 − 4e2) x2 + 4k2y2 = k2 (k2 − 4e2).

Dividing through by k2 (k2 − 4e2), gives 4
k2 x

2 + 4
k2−4e2 y

2 = 1. Hence x2

k2

4

− y2

4e2−k2

4

= 1 .

Recall that 2e > k. So 4e2 > k2, and 4e2 − k2 > 0. With a =
√

k2

4
= k

2
and b =

√
4e2−k2

4
=

1
2

√
4e2 − k2, we now have

x2

a2
− y2

b2
= 1 .

The graph is given by

4C. Some Geometry and Trigonometry

27. The radian measure of θ is s
1

= 0.693 and P = (cos θ, sin θ) ≈ (0.769, 0.639).

28. Since θ is equal to both 5 and s
2
, we get that s = 10.

29. Consider θ = 17.52. Because 17.72
2π

= 2.82, we get that 17.72 = (2.82)(2π). Since θ is positive,

it follows that Pθ is obtained by going around the unit circle 2.82 revolutions in the clockwise

7



2 2
π

1

0

cos θ

π
22
ππ

sec θ

0

2
3π

2
3π

direction starting from the point (1, 0). Two complete revolutions return us to the starting

point (1, 0). Since (0.82)(2π) = (3.28)
(

π
2

)
, it remains to proceed another three quarters of

a revolutions in the clockwise direction to the point (0, −1), and then another 0.28 ≈ 1
4

of a

quarter revolution to locate Pθ. It follows that Pθ is in the fourth quadrant. More precision

is obtained by recalling that Pθ = (cos θ, sin θ) = (cos 17.52, sin 17.52) ≈ (0.24,−0.97). For

θ = −21.83, do a similar thing in the clockwise direction. Because Pθ = (cos θ, sin θ) =

(cos−21.83, sin−21.83) ≈ (−0.99,−0.16). This time Pθ is in the third quadrant, close to the

point (−1, 0).

30. Start with the portion of the graph of the cosine shown below on the left. First consider

0 ≤ θ ≤ π
2
. As cos θ goes from cos 0 = 1 to cos π

2
= 0 , notice that sec θ = 1

cos θ
will move

from 1 to a larger and larger positive number. At θ = π
2
, note that sec π

2
= 1

cos π
2

= 1
0

is

not defined. The graph on the right captures this information. Then do the same thing for

−π
2
≤ θ ≤ 0 and π

2
≤ θ ≤ 3π

2
The rest of the graph follows the pattern already established.

31. The first three identities follow from similar identities for the cosine. To verify the fourth,

start with sin2 θ + cos2 = 1 and divide through by cos2 θ.

4D. Computing Orbital Information

32. From Table 4.2, a = 5.2028 AU and ε = 0.0484. So the linear eccentricity is e = εa = 0.2518

AU and the semiminor axis is b =
√

a2 − e2 =
√

27.0691 − 0.0634 =
√

27.0057 = 5.1967 AU.

After consulting Figure 4.28 observe that the greatest distance from Jupiter to the Sun is

a + e = 5.4546 AU and that the least distance is a − e = 4.951 AU. To convert to miles use

the estimate 1 AU = 93 × 106 miles. For example, the greatest distance from Jupiter to the

Sun is 507 × 106 miles.

33. For Mars, a3

T 2 = 1.52373

1.88092 = 3.5375
3.5378

= 0.9999. For Jupiter, a3

T 2 = 5.20283

11.86222 = 140.8353
140.7118

= 1.0009. For

Saturn, a3

T 2 = 9.53883

29.45772 = 867.9231
867.7561

= 1.0002. The fact that all these ratios are equal to one is

directly related to the definition of the units used. By definition, 1 AU is the semimajor axis

of the Earth and 1 year is equal to the period of the Earth’s orbit. So in these units, the ratio
a3

T 2 is equal to 1 for the Earth. By Kepler’s law all the ratios a3

T 2 must be equal to 1 (or more

8



accurately, close to 1) in these units.

34. i. The formula for the area of a circular sector of radius r and angle θ is 1
2
r2θ. The radian

measure of the angle ∠PSP ′ is arc PP ′

a−e
. It follows that the area of the circular sector

PSP ′ is 1
2
(a− e)2 arc PP ′

a−e
= 1

2
(a− e)(arc PP ′). The same computation verifies the other

formula.

ii. Let t be this common time. By Kepler’s second law and part (i), 1
2
(a − e)(arc PP ′) =

1
2
(a+ e)(arc QQ′). Since vP t = arc PP ′ and vAt = arc QQ′, it follows that 1

2
(a− e)vP t =

1
2
(a + e)vAt. The formula vP

vA
= a+e

a−e
follows. Dividing the numerator and denominator

by a, shows that vP

vA
= 1+ε

1−ε
. A look at Table 4.2 tells us that its value for the Earth is

1+0.0167
1−0.0167

= 1.0167
0.9833

= 1.0340. For Saturn the value is 1+0.0557
1−0.0557

= 1.0557
0.9443

= 1.1180.

35. i. Counting days, hours, and minutes, shows that tve = 75.6313 days for 1995. Adding the

length of spring, i.e., 92.7639 days to tve = 75.6313, gives us tss = 168.3952 days for

1995.

ii. For tve, the strategy of Section 4.8 gives β1 = 1.3011 and then β = β3 = β4 = 1.3173.

iii. Making the indicated substitutions gives r = 0.9958 AU and α = 1.3335 radians.

iv. For tss, the strategy of Section 4.8 gives β1 = 2.8969 and then β = β3 = β4 = 2.9009. It

follows that r = 1.0162 AU and α = 2.9048 radians.

36. Since e = 0, we find that a = b. So the ellipse x2

a2 + y2

b2
= 1 and the circle x2 +y2 = a2 coincide.

In reference to Figure 4.34, this means that the focus S of the ellipse is the center O of the

circle and that the points P and P0 coincide. So the segment SP coincides with the segment

OP0. It follows that α = β, r = a, and by Kepler’s formula (or a direct argument), that

α = β = 2πt
T

. The method of successive approximations of Section 4.8 is not needed because

r = a and α = β has an explicit expression in terms of t.

4E. The Orbit of Halley’s Comet

37. By Kepler’s third law a3

T 2 = 1 in the units AU and years because this ratio is 1 for the Earth.

Since T = 76 years for Halley, we get a3 = T 2 = 762. It follows that a = 762/3 = 17.94 AU.

Since the minimum distance between Halley and the Sun is a − e = d = 0.59 AU, where e is

the linear eccentricity, we see that e = a − d = 17.94 − 0.59 = 17.35 AU. Halley’s semiminor

axis is b =
√

a2 − e2 = 4.56 AU and its astronomical eccentricity is ε = e
a

= 17.35
17.94

= 0.967.

Halley’s greatest distance from the Sun is a + e = 17.94 + 17.35 = 35.29 AU. The ratio vP

vA
for

Halley is vP

vA
= 17.94+17.35

17.94−17.35
= 35.29

0.59
≈ 60.

38. By assumption and Figure 4.39, the Earth’s orbit is a circle with center (e, 0) and radius 1.

So (x − e)2 + y2 = 1 is an equation of the orbit. To find the x-coordinates of the points H1

and H2 of Figure 4.40, we need to solve the equations (x − e)2 + y2 = 1 and x2

a2 + y2

b2
= 1 for

9



x. By substituting and taking common denominators, we get

1 =
x2

a2
+

1 − (x − e)2

b2
=

b2x2 + a2 − a2x2 + 2a2ex − a2e2

a2b2
=

a2 − e2x2 + 2a2ex − a2e2

a2b2

So a2b2 = a2 − e2x2 + 2a2ex − a2e2 and e2x2 − 2a2ex + a2e2 − a2 + a2b2 = 0. Because

a2e2 − a2 + a2b2 simplifies to a2(e2 − 1 + b2) = a2(a2 − 1), we get by using the quadratic

formula that

x =
2a2e ±

√
4a4e2 − 4e2a2(a2 − 1)

2e2
=

2a2e ± 2ae
√

a2 − (a2 − 1)

2e2
=

a2 ± a

e
.

Because a2+a
e

= a2

e
+ a

e
> a2

a
= a, it is not possible for x = a2+a

e
. (Since x = a is the

x-intercept of the ellipse in Figure 4.40.) So we can conclude that x = a2−a
e

= a(a−1)
e

. So

x = 17.94(16.94)
17.35

= 17.52 AU. Inserting this value of x into y2 = 1 − (x − e)2, gives us y2 =

1 − (17.52 − 17.35)2 = 1 − (0.17)2 = 1 − 0.03 = 0.97. It follows that the y-coordinates of

the points H1 and H2 are 0.98 and −0.98 respectively. To sketch a more accurate version of

Figure 4.40, place H1 and H2 in such a way that the vertical segment H1H2 is 0.17 units to

the right of the Sun S. Notice that the trajectory of Halley (within the Earth’s orbit) is much

”steeper” than suggested in the figure.

39. The value of r is equal to the length of the segment SP = SH1. Since H1 lies on the circle

with center S and radius 1 AU (in other words on the Earth’s orbit), it follows that r = 1.

Because 0.98 is the y-coordinate of H1, notice that sin α = 0.98
1

= 0.98. Using the inverse

sine button of your calculator, will give you α = 1.37 (in radians). Now use Gauss’s formula

tan α
2

=
√

1+ε
1−ε

tan β
2

to compute β. By Exercise 37, ε = e
a

= 17.35
17.94

= 0.967. So

tan
β

2
=

√
1 − ε

1 + ε
tan

α

2
= (0.13)(0.82) = 0.11.

By taking an inverse tan, β
2

= 0.11. So β = 0.22. Inserting what we already know into

Kepler’s formula β − ε sin β = 2πt
T

, tells us that 0.22 − (0.967)(0.22) = 2πt
76

. Solving for t, we

get t ≈ (0.01)(76)
2π

= 0.12 years. We have shown that Halley requires about 0.12 years or 44 days

to move from perihelion to H1. A repetition of this discussion (or an appeal to symmetry)

will show that Halley requires the same number of days to move from H2 to perihelion. It

follows that Halley remains inside the Earth’s orbit for about 88 days.

40. Recall that in general |β − βi| ≤ εi. To insure that |β − βi| ≤ 0.0002, we need to achieve

εi ≤ 0.0002. For Halley, ε = 0.967. To be on the safe side we will take ε = 0.968. (There

is no information about the fourth decimal place.) By squaring again and again, we see

that ε256 < 0.000243. So this gets us close. Multiplying by 0.968 six more times shows that

ε262 < 0.0002.

41. This task is left to the student.

10
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4F. More Trigonometry and Gauss’s Formula

42. Enough hints have been supplied.

43. The first part is obvious. For the second, use sin2ϕ + cos2ϕ = 1.

44. The equality tan2 α
2

= 1−cos α
1+cos α

is verified by using the equalities 2 cos2 ϕ = 1 + cos 2ϕ and

2 sin2 ϕ = 1 − cos 2ϕ with ϕ = α
2
. That 1−cos α

1+cos α
= 1+ε

1−ε
1−cos β
1+cos β

follows by use of cos α = cos β−ε
1−ε cos β

.

That tan2 β
2

= 1−cos β
1+cos β

, uses 2 cos2 ϕ = 1 + cos2 ϕ and 2 sin2 ϕ = 1 − cos 2ϕ again, this time

with ϕ = β
2
. So

tan2 α

2
=

1 + ε

1 − ε
tan2 β

2
.

Now suppose that 0 ≤ β < π. Refer to the basic diagram from Kepler’s discussion and notice

that 0 ≤ α < π. So 0 ≤ β
2

< π
2

and 0 ≤ α
2

< π
2
. Refer to the graph of the tangent and notice

that tan α
2

and tan β
2

are both positive. So by taking square roots, tan α
2

=
√

1+ε
1−ε

tan β
2

in this

case. If π < β < 2π, then π < α < 2π. Now both tan α
2

and tan β
2

are negative. So again,

tan α
2

=
√

1+ε
1−ε

tan β
2
. If β = π, then by the basic diagram from Kepler’s discussion α = π. So

neither tan α
2

and tan β
2

are defined in this case. (Have a look at the graph of the tangent.)

This presents no problem since the basic point is to determine α in terms of β.

4G. A study of Kepler’s Formulas

Correction: In Exercise 45 the formula tan α = b sin β
a(cos β−ε)

is incorrectly written as tan α =
b sin β

a(cos β−e)
.

45. In the new figure, P and P0 both lie below the x-axis, X is on the left of O, and x is negative.

Check that SX is equal to e−x in this situation also. Let α′ = ∠XSP and β′ = ∠XOP0 and

notice that α = α′ +π and β = β′ +π. By use of the Examples 4.11 and 4.12, the verifications
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of the equations r = a(1 − ε cos β) and tan α = b sin β
a(cos β−ε)

go through virtually unchanged.

Only Kepler’s equation remains. The sectors referred to in the argument below, as well as the

related sections, will be those determined by the angles 2π − α and 2π − β rather than α

and β. In reference to the circle,

Area section P0XN = Area sector P0ON + Area ∆P0XO .

Because the sector P0ON is determined by the angle 2π − β, its area is equal to 1
2
a2(2π − β).

The area of the triangle ∆P0XO is 1
2
(−x)(−y0) = 1

2
(−x)(−a sin β). So

Area section P0XN =
1

2
a2(2π − β) +

1

2
xa sin β .

Now turn to the ellipse. By Cavalieri’s principle,

Area section PXN =
b

a

(
1

2
a2(2π − β) +

1

2
xa sin β

)
=

1

2
ba(2π − β) +

1

2
xb sin β .

Note next that At is equal to the area of the full ellipse, minus the area of the section just

computed, plus the area of ∆PXS. So

At = abπ − 1

2
ba(2π − β) − 1

2
xb sin β +

1

2
(e − x)(−y)

=
1

2
abβ − 1

2
xb sin β − 1

2
(e − x)b sin β =

1

2
abβ − 1

2
eb sin β

=
1

2
ab(β − ε sin β) .

The rest of the argument is identical to the one in the text. Alternatively, the argument

in the text can be retained with the following understanding: Let the sector P0ON be that

determined by β, the section P0XN to be that with perimeter the circular arc from N to A to

P0 and the segments P0X and XN , and let the elliptical section PXN be that with perimeter

the elliptical arc from N to A to P , and the segments PX and XN .

46. Let α, β, and t be the parameters for the same position in the first orbit. In going from the

first orbit to the second, 2π is added to both α and β and T is added to t. Observe that

a, b, ε, and r are the same for both orbits. So the question is as to whether the formulas are

valid with α′ = α + 2π in place of α, β′ = β + 2π in place of β, and t′ = t + T in place of t.

This follows quickly from the identities in Examples 4.11 and 4.12. For example,

β′ − ε sin β′ = β + 2π − ε sin β =
2πt

T
+ 2π =

2πt + 2πT

T
=

2πt′

T
.
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