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Solutions to the Exercises of Chapter 3

3A. The Circle and Related Areas

Correction: In the statement of Exercise 1, ”diagonal” should be ”diameter.”

1. Let ∆BAD be the triangle in question with BD the diameter of the circle. Let O be the

center of the circle. By Proposition 2.1, ∠BAD is equal to one-half the angle given by O and

the arc BCD. Since the latter is π, the former is π
2
. So ∆BAD is a right triangle. Next,

extend a line from A through O to some point C and complete this to the quadrilaterial

ABCD. Note that the triangles ∆AOD and ∆BOC are similar (side-angle-side). It follows

that AD = BC. In the same way, AB = CD. By Ptolemy’s Theorem,

AC ·BD = AB ·CD + AD·BC.

So BD2 = AB2 + AD2. Again, ∆BAD is a right triangle by Pythagoras’s Theorem.

2. The area of a circular sector is 1
2
r2θ where r is the radius of the circle and θ the central angle

of the sector. In the first case, θ = π
5

and r = 7, so that the area is 1
2
(72)π

5
= 49π

10
≈ 15.4. In

the second case, θ = 8
5

and the area is 1
2
(52)8

5
= 20.

3. The area of the full circular sector ACB is 1
2
r2θ. We need to subtract from this the area

of the triangle ∆ABC. Let D be the midpoint of the segment AB. So ∆ADC is one half

of the triangle ∆ABC. Note that sin θ
2

= AD
r

and cos θ
2

= CD
r

. So the area of ∆ADC is



1
2
CD · AD = 1

2
r2 sin θ

2
cos θ

2
. So the area of ∆ABC is r2 sin θ

2
cos θ

2
.

Comment: By an application of Exercise 6(iii), sin θ
2
cos θ

2
= 1

2
sin θ. Therefore, the shaded area in

Figure 3.30 is equal to 1
2
r2(θ − sin θ). So it measures the difference between θ and sin θ.

4. Since θ = 50
(

π
180

)
≈ 0.873 radians, we get that the area of the shaded section is

1

2
r2θ − r2

(
sin

θ

2

) (
cos

θ

2

)
≈ 1

2
52(0.873) − 52

(
sin

0.873

2

) (
cos

0.873

2

)
≈ 10.9125 − 25(0.4228)(0.9062) ≈ 1.3340.

5. All that we need to do is to show that the area of the quarter circle AOB is equal to the area

of the semicircle whose diameter is AB. Why? Let r = OB. So the area of the quarter circle

is 1
4
(πr2). Let s = BC. This is the radius of the semicircle. So the area of the semicircle is

1
2
(πs2). Is there a connection between r and s? By Pythagoras, (2s)2 = r2 +r2. So 4s2 = 2r2,

and hence 2s2 = r2. Plugging this into the expression for the area of the quarter circle gives

the area of the semicircle.

6. Since the area of the triangle AOB is equal to 1
2
r2, this is also the area of the lune. The area

of the section of the circle between the lune and the triangle is found by applying the formula

in Exercise 3 with θ = π
2
.

3B. Sigma Notation and Areas

7.
4∑

i=1

i = 1 + 2 + 3 + 4.

5∑
i=1

i2 = 12 + 22 + 32 + 42 + 52.

6∑
i=1

ii = 1 + 22 + 33 + 44 + 55 + 66.

8. Consider the pattern and observe that the areas of the black regions are given by the progres-

sion of numbers

1

2
,

1

2
+

1

22
,

1

2
+

1

22
+

1

23
,

1

2
+

1

22
+

1

23
+

1

24
, . . . ,

and after n steps, by
n∑

i=1

(
1

2

)i

=
1

2
+

1

22
+ · · · + 1

2n
. Let n get larger and larger. Since the

area of the square is 1, the areas of the black regions close in on 1. Rewriting this, we have:

lim
n→∞

n∑
i=1

(
1

2

)i

= 1.

9. By using similar triangles, the height of rectangle R1 is 1
2
h. So Area R1 = 1

2
b·1

2
h. Hence

Area R1 = 1
4
bh. In the same way, the height of R2 is 1

4
h. So Area R2 = 1

4
b·1

4
h = 1

16
bh.

2



b

h

Therefore, Area R2 + Area R
′
2 = 1

8
bh. At the next step, there are four rectangles, each

with base 1
8
b and height 1

8
h, and hence area 1

64
bh. The total area added by this step is

4
(

1
64
bh

)
= 1

16
bh. So the progression of numbers,

Area R1, [Area R1 + (Area R2 + Area R
′
2)], . . .

has the pattern

1

4
bh ,

1

4
bh +

1

8
bh ,

1

4
bh +

1

8
bh +

1

16
bh , . . . .

But this is equal to

1

2
bh

(
1

2

)
,

1

2
bh

(
1

2
+

1

22

)
,

1

2
bh

(
1

2
+

1

22
+

1

23

)
, . . . .

In view of Exercise 8, the sequence of numbers 1
2
, 1

2
+ 1

22 ,
1
2

+ 1
22 + 1

23 , . . . closes in on 1. So,

Area R1, [Area R1 + (Area R2 + Area R′
2)], . . .

closes in on 1
2
bh. But from a geometric point of view, these numbers close in on the area of

the triangle.

Note: Exercise 9 can be carried out for any triangle - not just a right triangle - by replacing

the rectangles of Figure 3.33 by parallelograms.

10. By Archimedes’s theorem, this area is equal to 4
3

(
1
2
(7)(4)

)
= 182

3
.

3C. Archimedes’s Law of the Lever

11. For equilibrium, m1d1 = m2d2. So 2000 = m2 · 10 and m2 = 200. So a force of 200 units must

be applied at P2 to attain equilibrium.

3
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4

12. Put both masses on a lever and place the fulcrum a distance x from the larger mass. For

equilibrium, 80x = 15(9 − x). So 95x = 135, and x = 1.42 meters.

3D. Facts needed in the Method

Note: The concept center of mass or centroid has already been used but not defined. Let’s do

so in intuitive terms. Consider any connected region in the plane and assume it to be made of a

thin, homogeneous, and rigid material. If you were to try to balance the region on the tip of one

of your fingers (or, to insure precision, at the tip of a pin) in such a way that the region remains in

stable horizontal position, then the point at which you would have to place your finger (or the pin)

is called the center of mass, or centroid, of the region. Note that this definition is consistent with

the use of the concept in Exercise 12.

13. Refer to Figure 3.36. Because F is the midpoint of ES, it follows that EF = FS. So taking

EF and FS as the respective bases of the triangles ∆V FE and ∆V FS, we know that these

bases are equal. To see that their heights (from the perspective of these two bases) are the

same simply drop a perpendicular from V to an extension of the segment ES. It follows

that the areas of ∆V FE and ∆V FS are equal. Does this fact allow us to conclude that

the centroid M must lie on the segment V F? The following consideration does make this

conclusion plausible: Consider the triangle ∆V ES to be made of thin, homogeneous, and

rigid material. Suppose you have a wire that is stretched taught and horizontal. Place the

triangle ∆V ES horizontally in such a way that the wire lies below and along the segment

V F . Since the overhanging triangles ∆V FE and ∆V FS have the same area and hence the

same weight, it is plausible that ∆V ES should be balanced on top of the wire in horizontal

position and that, therefore, the centroid M should lie on V F .

Correction: The argument above makes it plausible that M should lie on V F . But this argument

is not sufficient. Why? Simply because the requirements for balance (as we have seen) involve not

4
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V

E
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only weight, but also distance. Therefore more needs to be said. Archimedes’s verification is

another example of his technique ”conquer by subdividing.” The figure illustrates what Archimedes

has in mind. In the key step he fills the two triangles ∆V FE and ∆V FS with similar arrays of

small identical parallelograms so that each parallelogram on ∆V FE has a corresponding partner

on ∆V FS. (Four such pairs are shown in the figure.) By inserting a huge number of parallelograms

Archimedes fills out the two halves of the triangle. Since each parallelogram of ∆V FE balances

its partner on ∆V FS (with fulcrum on V F ), it follows that the point of balance M of the triangle

∆V ES must lie on V F . So the center of mass of ∆V ES lies on V F . For the details, see ”On

Plane Equilibriums I,” in Sir Thomas Heath, A History of Greek Mathematics, Volume II, From

Aristarchus to Diophantus, Dover Publications, Inc., New York, 1981.

14. Refer to Figure 3.36 and the figure below. The segment EF ′ has been extended to a segment

EF ′J in such a way that V J is parallel to ES. Two triangles that have equal corresponding

angles are similar. So ∆V F ′J is similar to ∆EF ′S. Since F ′ is the midpoint of V S, it follows

that V J = ES. In the same way, ∆EFM is similar to ∆VMJ and hence EF
V J

= FM
V M

. There-

fore, EF
ES

= FM
V M

. But F is the midpoint of ES. So FM
V M

= 1
2
. Therefore, FM = 1

2
VM . It follows

that FM = 1
3
V F , as required.

15. Go through the proof and note that the location of XZ is irrelevant.

Correction: In Figure 3.37 the segment FK needs to be shortened so that its length is equal to

that of the segment V F .

3E. Some Mathematics from the Middle Ages

Correction: In the statement of Exercise 16, replace ”height” by ”hypothenuse”.

16. Consider a right triangle with hypotenuse h and area A. Let x and y be the other two

5



A
x

y

h

_

a

2
a

sides. We must solve for x and y in terms of h and A: On the one hand, x2 + y2 = h2, and on

the other, A = 1
2
xy. So xy = 2A, y = 2A

x
and y2 = 4A2

x2 . Therefore, x2 + 4A2

x2 = h2. Multiply

through by x2, to get

x4 − h2x2 + 4A2 = 0.

Now what? Notice that you can solve for x2 by use of the quadratic formula:

(∗) x2 =
h2 ±

√
(h2)2 − 4(4A2)

2
=

h2 ±
√
h4 − 16A2

2
.

Solve for x by taking square roots. Then plug x2 into y2 = 4A2

x2 and solve for y. This leaves

the ± ambiguity. To resolve it, do the following: Notice that x2 = 4A2

y2 . Substituting this into

x2 + y2 = h2 shows (in the same way as in the earlier case of x2) that

(∗∗) y2 =
h2 ±

√
h4 − 16A2

2
.

Taking x to be the longer leg of the triangle, we will assume that x ≥ y. A look at both (∗)
and (∗∗) shows that we must have

x2 =
h2 +

√
h4 − 16A2

2
and y2 =

h2 −
√
h4 − 16A2

2
.

Since x and y are positive, we now get

x =

√
h2 +

√
h4 − 16A2

2
and y =

√
h2 −

√
h4 − 16A2

2
.

17. Consider the equilateral triangle with side a. Let its height be h. By Pythagoras,

h2 +
(

a
2

)2
= a2. So h2 = 3

4
a2, and h =

√
3

2
a. Therefore, the area of the triangle is

√
3

4
a2. Setting

this equal to Gerbert’s expression for the area, we get
√

3
4
a2 =

(
a
2

) (
a− a

7

)
=

(
a
2

) (
6a
7

)
= 6a2

14
.

It follows that
√

3 = 12
7

= 1.714. The correct value of
√

3 up to decimal places is 1.732.
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Note: Gerbert, a brilliant student as a young monk in France, was sent to study mathematics in

Spain, then under the control of the Islamic Moors. He carried back information from and about

the very advanced centers of Islamic learning (such as the one in Cordoba). Most importantly in

current context, he brought back from Spain the Hindu Arabic numeral system and introduced it to

Christian Europe. Later, as schoolmaster of the Cathedral school at Rheims, he built up a sizable

library and reformed the rigid and limited curricula. Gerbert, and in turn his students, brought an

element of enlightenment to the medieval Europe of the 11th and 12th centuries.

3F. Mathematics in the 16th Century

18. Note that x = 1 is a root of x3 + 3x− 4. So x− 1 divides x3 + 3x− 4. Carry out the division

x− 1|x3 + 3x− 4

to show that x3 +3x−4 = (x−1)(x2 +x+4). Can x2 +x+4 be factored? If yes, then it must

have a root. By the quadratic formula this must have the form −1±
√

1−16
2

. The appearance of√
−15 in this expression tells us that this is impossible. So x3 + 3x − 4 cannot be factored

further. Now consider x3 − 7x − 6 and observe that x = −2 is a root. So x + 2 divides

x3 − 7x− 6. Carry out the division

x + 2|x3 − 7x− 6

to get that x3−7x−6 = (x+2)(x2−2x−3). Does x2−2x−3 factor? Note that x2−2x−3 =

(x− 3)(x + 1). So x3 − 7x− 6 = (x + 2)(x− 3)(x + 1).

3G. Celestial Navigation

19. Denote the distance from the ship to the equator by d and let rE be the radius of the Earth.

If β is given in radian measure, then β = d
rE

. So d = βrE. Because α + β = π
2
, we get that

d =
(

π
2
− α

)
rE.

20. If α = 53◦, then α ≈ 0.925 radians. So by Exercise 19, d ≈ (1.571 − 0.925)(3950) =

(0.646)(3950) ≈ 2550 miles.
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