Honors Analysis - Homework 4

1. Let $A \subset [0, 1]$ be a measurable set, with respect to Lebesgue measure. A point $x \in A$ is a point of density of A, if

$$\lim_{\epsilon \to 0} \frac{\mu(A \cap [x - \epsilon, x + \epsilon])}{2\epsilon} = 1$$

Show that if $D \subset A$ is the set of points of density of A, then $\mu(A \setminus D) = 0$.

2. Let $A: E \to F$ be a linear operator between Banach spaces E, F. Show that A is continuous if and only if it is bounded.

3. For Banach spaces E, F let L(E, F) be the space of all bounded linear operators $A : E \to F$, equipped with the norm

$$||A|| = \sup_{x \neq 0} \frac{||A(x)||}{||x||}.$$

Show that L(E, F) is complete, i.e. it is a Banach space.

4.

(a) Let $A: E \to F$ and $B: F \to G$ be bounded linear operators between Banach spaces. Show that

$$\|BA\| \leqslant \|B\| \|A\|.$$

(b) Let $A: H \to H$ be a bounded linear operator on a Hilbert space H. Show that

$$||A^*A|| = ||A||^2.$$

5.

- (a) Give an example of an invertible operator $A : E \to E$ between Banach spaces, so that $||A^2|| \neq ||A||^2$.
- (b) Give an example of operators $A, B : E \to E$ for a Banach space E such that AB = I, but $BA \neq I$, where I is the identity.

6. Let C be a non-empty closed convex subset of a Hilbert space H, and let $x \in H$. Show that there is a unique $y \in C$ such that

$$||x - y|| = \inf\{||x - z|| : z \in C\}.$$

7. Let x_n be a sequence in a Banach space E. Show that the series $\sum_{n=1}^{\infty} x_n$ converges in E if the series $\sum_{n=1}^{\infty} ||x_n||$ converges.