- **1.** Suppose that $f: A \to \mathbf{R}$ is integrable. Show that the absolute value $|f|: A \to \mathbf{R}$ is also integrable.
- **2.** Let $f:[0,1] \to \mathbf{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q}, \text{ where } p, q \ge 0 \text{ are coprime integers} \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is integrable and compute $\int_{[0,1]} f(x) d\mu$ with respect to Lebesgue measure.

3. Let $f_n : A \to \mathbf{R}$ be a sequence of measurable functions. Let $B \subset A$ consist of those points $x \in A$ such that the limit $\lim_{n\to\infty} f_n(x)$ exists. Show that B is measurable.

4. Give an example of an additive measure on the algebra of elementary subsets of $[0, 1] \times [0, 1]$, which is not σ -additive.

5. Suppose that $f : A \to \mathbf{R}$ is integrable with respect to a measure μ , and $f(x) \ge 0$ for all $x \in A$. For any $t \in [0, \infty)$ let

$$\Phi(t) = \mu(\{x \in A \,|\, f(x) > t\}).$$

Show that

$$\int_A f \, d\mu = \lim_{K \to \infty} \int_0^K \Phi(t) \, dt,$$

where the integral on the right can be thought of as either the Lebesgue integral, or the Riemann integral (note that Φ is monotonic, hence Riemann integrable).

6. Let μ be the Wiener measure on the space $C_0[0,1]$ of continuous functions $f:[0,1] \to \mathbb{R}$ satisfying f(0) = 0. For any $t \in [0,1]$ define

$$\Phi_t : C_0[0,1] \to \mathbf{R}$$
$$f \mapsto f(t)^2.$$

Compute

$$\int_{C_0[0,1]} \Phi_t \, d\mu.$$

7. Let $f:[0,1] \to [c,d]$ be a continuous function, such that for any $y \in [c,d]$ there are only finitely many x for which f(x) = y. Define the "solution counting" function $N:[c,d] \to \mathbf{R}$ by

$$N(y) =$$
(number of solutions of the equation $f(x) = y$).

Show that N is a measurable function. (*Hint: try to write* N *as a limit of simpler functions.*)

8. Suppose that $f_n, f : A \to \mathbf{R}$ are measurable. We say that f_n converges to f in measure, if for all $\delta > 0$ we have

$$\lim_{n \to \infty} \mu\{x; |f_n(x) - f(x)| > \delta\} = 0.$$

- (a) Show that if f_n converges to f almost everywhere, then f_n converges to f in measure.
- (b) Give an example to show that the converse is not true.