Honors Analysis - Homework 1

1. Prove the following inclusions of sets.
(a) $A \triangle B \subset(A \triangle C) \cup(C \triangle B)$
(b) $\left(A_{1} \backslash A_{2}\right) \triangle\left(B_{1} \backslash B_{2}\right) \subset\left(A_{1} \triangle B_{1}\right) \cup\left(A_{2} \triangle B_{2}\right)$
(c) $\left(A_{1} \cap A_{2}\right) \triangle\left(B_{1} \cap B_{2}\right) \subset\left(A_{1} \triangle B_{1}\right) \cup\left(A_{2} \triangle B_{2}\right)$
2. Let \mathcal{E} be the set of elementary subsets of the unit square $[0,1] \times[0,1]$. For $A, B \in \mathcal{E}$, define

$$
d(A, B)=\tilde{m}(A \triangle B) .
$$

Define an equivalence relation on \mathcal{E} by letting $A \sim B$ if $d(A, B)=0$. Denote by \mathcal{E} / \sim the set of equivalence classes.
(a) Show that d defines a metric on \mathcal{E} / \sim.
(b) Is \mathcal{E} / \sim with this metric a complete metric space?
3. Let $C \subset[0,1]$ be the Cantor set (defined last semester). Let $A \subset[0,1] \times[0,1]$ be the set defined by

$$
A=\{(x, y) \mid x \in C, y \in[0,1]\} .
$$

Show that A is measurable, and $\mu(A)=0$.
4.
(a) For any elementary set $A \subset[0,1] \times[0,1]$ show that

$$
\mu(A)=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \#\left(A \cap \frac{1}{n} \mathbf{Z}^{2}\right)
$$

Here $\#(E)$ denotes the number of elements of a set E, and $\frac{1}{n} \mathbf{Z}^{2}$ is the set of elements $\left(\frac{a}{n}, \frac{b}{n}\right)$ where $a, b \in \mathbf{Z}$.
(b) Show that the above equation is not true for more general measurable sets A.

