Honors Analysis - Homework 6

The questions marked with * are harder.

1. Consider the space $C_{[0,1]}$ with the norm

$$||f||_p = \left(\int_0^1 |f(x)|^p \, dx\right)^{1/p}$$

for some p > 1. Let $\phi \in C_{[0,1]}$, and define the functional $F: C_{[0,1]} \to \mathbf{R}$ given by

$$F(g) = \int_0^1 g(x)\phi(x) \, dx.$$

Prove that F is a bounded functional and find the norm ||F||.

2. Let

$$l_1 = \{(x_1, x_2, \ldots) \mid \sum_{i=1}^{\infty} |x_i| < \infty\}$$

with norm $\|\mathbf{x}\|_1 = \sum_{i=1}^{\infty} |x_i|$, and let

$$m = \{(x_1, x_2, \ldots) \mid \sup_{i>0} |x_i| < \infty\}$$

with norm $\|\mathbf{x}\|_{\infty} = \sup_{i>0} |x_i|$. Prove that $l_1^* = m$.

3.^{*} Suppose that we have a sequence $\mathbf{x}_k \in l_1$, converging weakly $\mathbf{x}_k \rightarrow 0$. Show that then $\mathbf{x}_k \rightarrow 0$ in l_1 , i.e. $\lim_{k\to\infty} \|\mathbf{x}_k\|_1 = 0$.

4. Let $S \subseteq V$ be a subset of a normed linear space V. Suppose that S is weakly bounded, i.e. for every linear functional $f \in V^*$ there is a constant C (depending on f) such that |f(x)| < C for all $x \in S$. Show that S is bounded in norm, i.e. there is a constant D such that ||x|| < D for all $x \in S$.

5. Show that weak limits are unique. I.e. if $x_n \rightharpoonup x$ and $x_n \rightharpoonup y$ in a normed linear space V, then x = y.

6.^{*} A function $f : [0,1] \to \mathbf{R}$ is called Hölder continuous, if there exists an $\alpha \in (0,1]$ and C > 0 such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for all $x, y \in [0, 1]$.

Suppose that $E \subset C_{[0,1]}$ is a closed subspace, using the sup norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. Assume that every element of E is Hölder continuous.

(a) Show that there exists a $\beta \in (0, 1]$ and K > 0 such that

$$|f(x) - f(y)| \leq K ||f|| ||x - y||^{\beta}$$

for all $f \in E$ and $x, y \in [0, 1]$. (Note that in the definition of Hölder continuity the α and C can depend on f.)

(b) Show that E is finite dimensional.