Honors Analysis - Homework 4

1. Suppose that X is a totally bounded metric space. Prove that X has a countable dense subset.

2. Let *M* be a bounded subset of the metric space $C_{[0,1]}$ with the metric $\rho(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$. Prove that the set of all functions $F \in C_{[0,1]}$ of the form

$$F: [0,1] \to \mathbf{R}$$
$$F(x) = \int_0^x f(t) \, dt,$$

for $f \in M$ is totally bounded in $C_{[0,1]}$.

3. Let (R, ρ) be a complete metric space, and $S \subset R$ a dense subset (i.e. R is the completion of S). Suppose that

$$f: S \to \mathbf{R}$$

is a uniformly continuous function on S. Prove that there is a unique continuous function $F : R \to \mathbf{R}$, such that F(x) = f(x) for all $x \in S$. (You might want to try the special case where R = [0, 1] and S = (0, 1] first).

4. Suppose that $f: X \to \mathbf{R}$ is a lower semicontinuous function on a topological space X. Suppose that $\lim_{x\to\infty} x_n = x$, where $x_n, x \in X$.

(a) Prove that

$$f(x) \le \lim_{n \to \infty} \inf_{k \ge n} \{f(x_k)\}.$$

(b) Give an example to show that the limit $\lim_{n\to\infty} f(x_n)$ might not exist.

5. Let (X, ρ) be a complete metric space, and let S be the set of all non-empty compact subsets of X. For $A, B \in S$, define the distance

$$d(A,B) = \max\{\sup_{x\in A}\inf_{y\in B}\rho(x,y), \sup_{y\in B}\inf_{x\in A}\rho(x,y)\}.$$

In other words $d(A, B) \leq k$ means that for every point $x \in A$ there is a point $y \in B$ with $d(x, y) \leq k$ and vice versa, i.e. for every point $y \in B$ there is an $x \in A$ with $d(x, y) \leq k$.

- (a) Show that (S, d) is a metric space.
- (b) Show that (S, d) is complete.
- (c) Assuming that (X, ρ) is compact, prove that (S, d) is totally bounded (so, combined with (a), this means (S, d) is compact).