Honors Analysis - Homework 3

- **1.** Give examples of a metric space X and a map $F: X \to X$ with no fixed points, satisfying
 - (a) X complete, and $\rho(F(x), F(y)) < \rho(x, y)$ for all $x, y \in X, x \neq y$.
 - (b) X not complete, and there is an $\alpha < 1$ such that $\rho(F(x), F(y)) \leq \alpha \rho(x, y)$ for all $x, y \in X$.

2. Let Z denote the space \mathbf{R} with the Zariski topology. Recall that this means that the open sets in Z are the empty set, and the complements of finite sets.

- (a) Is Z Hausdorff?
- (b) Is Z first countable?
- (c) Is Z compact?
- (d) Show that polynomial functions give continuous maps $Z \to Z$.
- (e) Given an example of a map $f : \mathbf{R} \to \mathbf{R}$ which is continuous with respect to the usual topology on \mathbf{R} , but is not continuous as a map $Z \to Z$.

3. Show that a map $f: X \to Y$ of topological spaces is continuous if and only if $f^{-1}(U)$ is an open subset of X, for all open subsets $U \subseteq Y$.

4. Give an example of a topological space X and a compact set $K \subset X$ such that K is not closed.

5. Give an example of a topological space X and a map $f : X \to \mathbf{R}$, such that for every convergent sequence $x_n \to x$ in X we have $f(x_n) \to f(x)$, but f is not continuous.

6. In this problem you will show that the set of nowhere differentiable functions is dense in $C_{[0,1]}$, where we are using the usual metric $\rho(f,g) = \sup |f-g|$.

(a) Show that if $f \in C_{[0,1]}$ is differentiable at $x_0 \in [0,1]$, then there is a constant M, such that

$$|f(x) - f(x_0)| \le M|x - x_0|,$$
 for all $x \in [0, 1]$

(b) Define $A_n \subseteq C_{[0,1]}$ to be the set of functions $f \in C_{[0,1]}$ for which there exists a point $x_0 \in [0,1]$ such that

$$|f(x) - f(x_0)| \le n|x - x_0|$$
 for all $x \in [0, 1]$.

Show that A_n is closed in $C_{[0,1]}$.

- (c) Show that A_n has empty interior in $C_{[0,1]}$. (*Hint: given an* $f \in A_n$ and $\epsilon > 0$, you need to find a g such that $\rho(f,g) < \epsilon$ and g oscillates very rapidly, so that $g \notin A_n$.)
- (d) Conclude using Baire's theorem, that the set of nowhere differentiable functions is dense in $C_{[0,1]}$.