Honors Analysis - Homework 2

1. Define a map $F: C_{[0,1]} \rightarrow \mathbf{R}$ by letting

$$
F(f)=\int_{0}^{1}|f(x)|^{3 / 2} d x
$$

For the following choices of metrics, determine whether F is continuous:
(a) $\rho(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$
(b) $\rho_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$
(c) $\rho_{2}(f, g)=\left(\int_{0}^{1}|f(x)-g(x)|^{2} d x\right)^{1 / 2}$
2. Prove Hölder's inequality for integrals. Namely if $f, g \in C_{[0,1]}$, and $p, q>1$ satisfy $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\int_{0}^{1} f(x) g(x) d x \leqslant\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{0}^{1}|g(x)|^{q} d x\right)^{1 / q}
$$

3. Let (X, ρ) be a metric space.
(a) Fix a point x_{0} in X and define the function $f: X \rightarrow \mathbf{R}$ by letting $f(x)=\rho\left(x, x_{0}\right)$ for all x. Prove that f is continuous.
(b) Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences in X converging to x and y respectively. Prove that

$$
\lim _{n \rightarrow \infty} \rho\left(x_{n}, y_{n}\right)=\rho(x, y) .
$$

4. Let $f: X \rightarrow Y$ be a map between metric spaces, and let $x \in X$ be a point. Prove that f is continuous at x, if and only if whenever $\left\{x_{n}\right\}$ is a sequence converging to x, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f(x)$.
5. Recall the metrics ρ_{2} and ρ_{∞} on \mathbf{R}^{n} that we defined by

$$
\begin{gathered}
\rho_{2}(\mathbf{x}, \mathbf{y})=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{1 / 2} \\
\rho_{\infty}(\mathbf{x}, \mathbf{y})=\max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|
\end{gathered}
$$

Show that $\left(\mathbf{R}^{2}, \rho_{2}\right)$ and $\left(\mathbf{R}^{2}, \rho_{\infty}\right)$ are not isometric. (Note that it is not enough to consider the identity map.)
6. Suppose that $f_{n} \in C_{[0,1]}$ is a sequence converging to a function $f:[0,1] \rightarrow \mathbf{R}$ uniformly. I.e. we have

$$
\lim _{n \rightarrow \infty} \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=0 .
$$

Prove that f is continuous.
7. Recall the metric space m, whose elements are the bounded infinite sequences of real numbers, with the metric

$$
\rho(\mathbf{x}, \mathbf{y})=\sup _{i=1,2, \ldots}\left|x_{i}-y_{i}\right| .
$$

Prove that m is complete.
8. Let $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ be a nested sequence of non-empty closed sets in a complete metric space (R, ρ).
(a) Give an example to show that the intersection $\bigcap_{k \geqslant 1} A_{k}$ may be empty.
(b) Suppose that the sets A_{k} are bounded, i.e. we can define the diameters

$$
d\left(A_{k}\right)=\sup _{x, y \in A_{k}} \rho(x, y) .
$$

Prove that if $\lim _{k \rightarrow \infty} d\left(A_{k}\right)=0$, then

$$
\bigcap_{k \geqslant 1} A_{k} \neq \emptyset .
$$

(c) What can we say when the sets A_{k} are bounded, but the diameters do not converge to zero? Is the intersection $\bigcap_{k \geqslant 1} A_{k}$ non-empty?

