## Honors Analysis - Homework 1

The questions marked with $*$ are harder and might take a while to solve.

1. Suppose that $f: X \rightarrow Y$ is a map, and $\left\{B_{\alpha}\right\}$ is a collection of subsets of $Y$. Prove that

$$
f^{-1}\left(\bigcap_{\alpha} B_{\alpha}\right)=\bigcap_{\alpha} f^{-1}\left(B_{\alpha}\right)
$$

2. 

(a) Suppose that $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ are all finite non-empty sets. Prove that

$$
\bigcap_{k \geqslant 1} A_{k}
$$

is non-empty.
(b) Is the statement in (a) still true if the $A_{k}$ are allowed to be infinite?
3. Let $A$ be a set and let $S$ be the set of all subsets of $A$. Prove that there does not exist a one-to-one map from $A$ onto $S$.
4. Let $M$ be an infinite set, and $A$ be a countable set. Show that there exists a one-to-one map from $M$ onto $M \cup A$.
5. Prove that $\mathbf{R} \times \mathbf{R}$ has the same cardinality as $\mathbf{R}$.
6. Does the set of all continuous real functions on $\mathbf{R}$ have the same cardinality as $\mathbf{R}$ ? Justify your answer.
7. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ and $p>0$ write

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Prove that

$$
\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right|
$$

8. In the notation of the previous question, define a "distance" function $\rho_{p}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{p}$ for $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$. Is $\left(\mathbf{R}^{n}, \rho_{p}\right)$ a metric space for $p \in(0,1)$ and $n>1 ?$
9.* Suppose that $A \subseteq B \subseteq C$ are three sets. Show that if $A$ and $C$ have the same cardinality, then $B$ also has the same cardinality as $A$ and $C$.
