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Abstract— Accelerated architectures such as GPUs (Graphics 

Processing Units) and MICs (Many Integrated Cores) have been 
proven to increase the performance of many algorithms 
compared to their CPU counterparts and are widely available in 
local, campus-wide and national infrastructures, however, their 
utilization is not following the same pace as their deployment. 
Reasons for the underutilization lay partly on the software side 
with proprietary and complex interfaces for development and 
usage. A common API providing an extra layer to abstract the 
differences and specific characteristics of those architectures 
would deliver a far more portable interface for application 
developers. This cloud challenge proposal presents such an API 
that addresses these issues using a container-based approach. 
The resulting environment provides Docker-based containers for 
deploying accelerator libraries, such as CUDA Toolkit, OpenCL 
and OpenACC, onto a wide variety of different platforms and 
operating systems. By leveraging the container approach, we can 
overlay accelerator libraries onto the host without needing to be 
concerned about the intricacies of underlying operating system of 
the host.  Docker therefore provides the advantage of being easily 
applicable on diverse architectures, virtualizing the necessary 
environment and including libraries as well as applications in a 
standardized way. The novelty of our approach is the extra layer 
for utilization and device discovery in this layer improving the 
usability and uniform development of accelerated methods with 
direct access to resources. 

Index Terms—Virtualization, cloud computing, Docker, virtual 
machine, accelerated architectures 

I. INTRODUCTION  
Cutting-edge parallel accelerators enable major 

performance gains on a plethora of algorithms, e.g., the 
accelerated versions of LTMDOpenMM [1], GPU-BLAST [2], 
SAMPO [3]. However, the recent advancement and power of 
such accelerators has grown disproportionality to their usage, 
even though they are available as local resources for research 
teams, as campus-wide resources or in distributed computing 
infrastructures, such as XSEDE. In spite of significant 
deployment of accelerators in the latter, the usage lags 
dramatically. The underutilization is caused by multiple factors 
such as insufficient cache bandwidth for diverse applications in 
the case of Xeon Phis, proprietary interfaces, and device 
discovery in general. While the first factor is a problem that 
should be tackled by hardware providers, the second and third 
problems can be tackled via software approaches. Recent 
toolkits, such as the dedicated CUDA Toolkit for NVIDIA 
GPUs [4], as well as OpenCL [5] and OpenACC [6], are 
generally applicable for GPUs, APUs, and many-core 
coprocessors providing extremely advanced APIs for utilizing 
such architectures. However, developers must become deeply 
familiar with diverse architectures and their specific 
characteristics. Additionally, there are duplicated APIs for 
common utilities e.g. to query for available devices and device 
memory or the utilization of resources. Furthermore, the 
developers often need to redevelop their code for each type and 
generation of hardware. A common API therefore, would 
provide a far more portable architecture for application 
developers. This cloud challenge proposal addresses this issue 
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by providing a fully featured runtime environment, for 
transparent targeted deployment of libraries, drivers and 
applications for OpenCL, CUDA Toolkit and OpenACC. To 
achieve this we use Docker-based [7] accelerator containers to 
provide a virtualization of these libraries for deployment onto 
various infrastructures. 

Virtualization is the foundation of cloud computing to 
enable virtual machine (VM) user environments on top of the 
physical hardware. VMs allow developers to optimize their 
applications for specific environments in order to decrease the 
development time and increase efficiency.  However, these 
images can be large and require a hypervisor to facilitate 
communication between the virtual machine and the host 
operating system, thus hampering portability. Containers, on 
the other hand, are based on shared operating systems and thus 
more lightweight and efficient than hypervisors. Instead of 
virtualizing hardware, containers 1) rest on top of a single 
Linux instance with the ability to provide incremental 
snapshots, 2) do not require the duplication that VMs need, and 
3) provide a small, neat capsule containing the target 
application and its dependencies.  Using a tuned container 
system can often provide four-to-six times as many server 
instances per capacity compared to VMs. Containers use the 
Linux LXC user space tools, where applications run with their 
own file system, storage, CPU, and memory. While the 
hypervisor abstracts an entire device, containers just abstract 
the operating system kernel. 

In this work we are motivated to provide a virtual 
container-based accelerator environment to give developers the 
freedom in which to develop the tools necessary for research 
for deploying their accelerator-based applications. Docker 
offers a lightweight, portable solution while providing 
necessary virtual runtime environments.  Docker containers 
neatly encapsulate the application and the necessary 
dependencies, without sacrificing performance. In this 
proposal, we provide the architecture for the system and 
demonstrate that using Docker containers to encapsulate the 
accelerator toolkits is a viable proposition.  We will show that 
by using this approach compared to a native installation, there 
is minimal performance loss when running applications that 
utilize the available accelerators such as the GPU or MICs. 

The remainder of this paper is organized in the following 
way. The next section provides related work in the area of 
accelerated toolkits and approaches. Section 3 describes the 
architecture for the approach. Section 4 provides performance 
measurements we have recorded using this system. Section 5 
discusses the portability of the Docker containers and Section 6 
provides the scalability characteristics of our approach. Section 
7 discusses the limitations of the approach and in Section 8, we 
conclude the work and briefly discuss future work we intend to 
do. 

II. RELATED WORK 
Related studies to our work target two diverse areas. The 

first are studies investigating whether Docker compared to 
native solutions is feasible from a performance point of view.  
Many of them are concerned with whether or not Docker can 

close the performance gap between running applications in the 
native environment and running them inside a virtual machine. 
The second area involves approaches to ease the access to 
diverse architectures via unified libraries and APIs to address 
the challenge of utilizing novel architectures in the fast 
changing hardware landscape. While building a common API 
is future work, we have evaluated suitable frameworks.  

A. Performance Studies 
The first area is addressed by diverse publications. 

Tommaso et al. [8] examine the impact of Docker containers 
on the performance of bioinformatic tools when compared to 
the native system. The paper specifies three use cases 
concluding that the effect of Docker containerization of 
applications on their execution performance is negligible.  
Felter et al. [9] provide a comparison of native, container, and 
virtual machine environments using benchmarks relevant to 
cloud computing. The paper focuses on the performance 
impact on server workloads, concluding that, in many cases, 
container performance is equal to native performance while 
virtual machines tend to fall short. Morebito et al. [10] provide 
an evaluation of virtual machines, Docker, and native 
performance using a variety of benchmarking tools. The paper 
concludes that applications running in containers suffer from 
minimal performance loss without the overhead associated 
with virtual machines.  

The majority of the evidence suggesting the viability of the 
Docker platform as a lightweight virtualization solution 
focuses on benchmarking Docker with applications run entirely 
on the CPU.  In this proposal we provide evidence suggesting 
containerization as a viable solution for increasing the 
accessibility of accelerated approaches. While there are 
containers designed to facilitate the use of GPU’s and MICs 
these containers are scarce.   

B. Unified Libraries and APIs 
The second area includes solutions with diverse foci for 

unifying access to diverse architectures. Various studies have 
been undertaken on performance portability techniques to 
adapt to changing hardware. We intend to use Tangram [11] as 
a C++ language extension that is applicable for diverse 
accelerated architectures and CPUs. Tangram is based on the 
idea that complex and highly optimized algorithm code for 
different architectures can be automatically generated from a 
set of simple code fragments called codelets.  
      In the Tangram language, a codelet is a code fragment that 
implements a particular computation. A spectrum is a unique 
computation associated with a collection of functionally 
equivalent codelets. Codelets in the same spectrum have the 
same name and function signature, but have different 
implementations. They can be implemented using different 
algorithms or the same algorithm but different optimization 
techniques. 
     There are different types of codelets. Codelets can be 
atomic or compound. Atomic codelets are self-contained while 
compound codelets invoke other spectrums. Compound 
codelets can be recursive if they invoke their own spectrum. 
Codelets can be scalar or vector. The difference is that scalar 
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codelets are oblivious to other elements of the same vector, 
whereas vector codelets can communicate between them 
under the assumption of Single-Instruction-Multiple-Data 
execution timing. In other words, vector codelets may perform 
actions unique to vector execution and are not meant to be 
scalarized. Both scalar and vector atomic codelets define 
computations on an element of an aggregate data structure 
(similar to OpenCL/CUDA) and both are vectorizable. If a 
spectrum is invoked from a function that is not a codelet, then 
that function is called a host function. 
     The Tangram language is designed as an extension of C++ 
with the qualifiers, primitives, and built-in containers (as in 
functional languages). Tangram’s qualifiers assist with codelet 
management (codelet, tag, env), vectorization (vector, shared), 
and communicating optimization hints (mutable, tunable). 
Tangram’s primitives assist with expressing common work 
partitioning and data parallel operations. Tangram’s containers 
– coupled with the primitives – make characterization of 
memory access patterns and data flow easier, thereby making 
transformations such as coarsening, tiling, vectorization, 
privatization, blocking, and thread-level parallelization robust 
and predictable. 

     The Tangram language also provides support for 
expressing atomic and compound codelets, map and iterator 
utilities for expressing data parallelism, vector annotations, 
and tuning knobs. The Tangram compiler is implemented with 
the Clang and LLVM infrastructure. The compiler applies 
coarsening of mapped functions, automatic data placement, 
hierarchical composition of compound and atomic codelets, 
algorithm selection, and pruning of the tuning space to 
generate multiple kernels for the same computation pattern 
customized for the target architecture. The runtime performs 
Simultaneous Productive Micro-Profiling (SPMP) for more 
accurate tuning-space pruning and input-driven adaptation. 

Thread coarsening has been done for GPUs [12] as well as 
for compiling from GPU-like programming models to CPUs 
[13-20]. Data placement adaptation has been accomplished by 
PORPLE [21] as well as prior works that focused on rule-based 
methods [22]. Hierarchical composition of kernels for adapting 
to various architecture hierarchies via nested parallelism has 
been done by NESL [23]. Autotuning has been explored 
thoroughly in the literature [24, 25]. Tangram unifies many of 
these techniques in a single workflow and also adopts a run-
time approach based on hardware counters [26]. Performance 
portability from a single source has been an area of great 
interest. High-level languages such as Surge [27] have been 
proposed for targeting CPUs and GPUs, providing containers 
and primitive operations to the user. Surge does not support 
hierarchical composition of codelets like Tangram does. 
Libraries of algorithms and data structures for heterogeneous 
computing, such as Thrust [28] have also been used to target 
CPUs and GPUs from a single API. However, libraries are 
limited to the library developer's ability to anticipate 
architectures and tune to them, and do not have Tangram's 
ability to automatically synthesize new kernels given new 
device specs. Petabricks [29] allows the user to define codelets 
function and supports composition (decomposition more 

precisely) and autotuning. However, Petabricks focuses more 
on system-level optimization like task scheduling, managing 
data transfer among devices, or selection from methods or 
library kernels. Tangram focuses on kernel synthesis and 
architectural optimization for performance portability. Without 
high-performance library kernels, performance gain from 
system level optimization is limited. Delite [30] supports 
performance portability from a single source by providing a 
metaprogramming framework for creating domain-specific 
languages, while Tangram is a general purpose language. 

III. CLOUD ENVIRONMENT ARCHITECTURE 
The ability to create virtual versions of operating systems, 

servers, storage devices or networks has fostered the 
development of modern computing with a heavy influence on 
cloud utilization. Over the past few years we have seen 
tremendous growth of virtualization in the area of cloud 
computing. Virtualization has proved particularly useful in the 
area of software development and distribution.  Developers can 
optimize their software for specific environments and provide 
these environments in the form of virtual images.  Platforms 
such as VMware or OpenStack provide the infrastructure on 
which these images can run.  In addition, VMware and similar 
software provide a sandbox in which the applications can run 
without altering the configuration of the host system. This 
provides an extra layer of security giving developers the ability 
to scale the software freely.  However, these images can be 
costly in terms of memory because they require an underlying 
operating system and kernel in addition to the necessary 
dependencies for the application.  Recently, there has been an 
increasing trend in using Docker to virtualize the images of 
runtime environments.  Docker provides a platform for its users 
to create environments with only the minimal dependencies for 
the application.  By utilizing the host kernel, Docker images 
provide a scalable alternative to virtual machines, which can 
accommodate increasing demands for virtualizations without 
sacrificing performance. 

Virtualization is particularly useful in the field of scientific 
research.  Software developed for simulations or mathematical 
modeling are often based on certain hardware and software 
requirements and being able to virtualize these environments 
makes the applications more accessible to researchers.  One 
such application is SAMPO (Scalable Agent-based Mosquito 
POint model) that uses OpenCL, a multithreading API 
designed to utilize the GPU to model the prevalence of 
malaria-vectors in a population [3, 31].  The program requires a 
number of environment variables and libraries to be installed in 
order to work, which could cause problems for researchers.  
However, the initial setup can be done in a Docker container, 
which can then be shipped as an image with the application. 
Researchers will then be able to run the application inside the 
container without needing to perform any further setup. 

There are no specific hardware requirements for Docker 
that are different from a virtual machine.  It is the difference in 
the necessary software systems between Docker and virtual 
machines that make it a much more lightweight solution to 
virtualization.  The major difference is that Docker containers 
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use shared operating systems as opposed to the hypervisor 
system of virtual machines.  This means that containers only 
virtualize the kernel of the host operating system instead of the 
entire device allowing for a more efficient use of resources. 
This efficiency allows users to potentially run four to six times 
the number of application instances as with virtual machines 
[32].  Figure 1 shows the structure of a host machine running 
multiple applications both inside and on the host machine. 

 

 Figure 1: The software architecture of multiple containers on 
a host system.  Containers are coordinated by the Docker 
engine while in parallel also other applications can run on the 
host machine (App 3). 
In addition to removing the hypervisor, containers utilize a 
layered file system allowing them to share common files and 
libraries when necessary.  This is the foundation on which the 
Docker engine's version system is built.  Images can make use 
of the pre-existing libraries and binaries during the build 
process, decreasing build time and space consumption while 
increasing portability.  Computing resources such as CPU and 
memory usage may also be dynamically allocated at the 
runtime of the container. 

IV. PERFORMANCE 
Virtual machines typically perform slower than the host 

system when given the same task due to unnecessary overhead 
that come with the installation of an entirely new system.  
While this may be only a minor inconvenience in some cases, 
in other areas, specifically research fields, where computing 
resources and availability are limited, execution time and size 
of the programs need to be minimized.  Docker offers a 
minimal solution to this issue without sacrificing performance.  
This is verified through a plot of similar data for a computation 
heavy algorithm: SGEMM, a matrix multiplication algorithm.  
The specific SGEMM implementation used to generate the 
data utilized the GPU of the host system through the OpenCL 
API (see Figure 2). 

For both machines the plots of the execution times overlap 
completely providing concrete evidence that running 
applications in a Docker environment does not result in 

performance loss. A comparison of the runtime of the SAMPO 
simulation on a host machine with an NVIDIA GeForce GTX 
700 GPU and in a Docker container on the same machine 
suggests that there is little to no difference between running 
programs on a host or in a Docker environment. 
 
 
 

 
Figure 2. Execution times for the SGEMM algorithm on a host 
machine and in a Docker container.  Data was gathered from to 
different machines one with an NVIDIA GeForce GTX 770 
GPU and the other with an NVIDIA GeForce GTX Titan Z 
GPU. 
 

 
 
Figure 3. Run time of the SAMPO simulation both inside a 
Docker container and on the host machine.   
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Both SAMPO and the SGEMM implementation utilize the 
available accelerators on the machine, which the Docker 
engine supports through the use of runtime flags.  The flag 
used to specify the NVIDIA GeForce GTX 770 for the 
SAMPO container is shown below in Figure 4. 
 

 
 
Figure 4. Syntax for specifying available accelerators for a 
Docker image to access. 

V. PORTABILITY 
Because of its neat encapsulation of runtime environments 

and the ability to cater to the diverse accelerated architectures, 
Docker provides a portable utility for accelerated approaches. 
However, even without the unnecessary overhead associated 
with providing a secondary operating system, Docker images 
can become relatively large.  When setting up an environment 
for some applications the necessary dependencies can develop 
into an image that might be too large to feasibly transfer over a 
network.  Figure 5 shows a plot of the pull times for Docker 
images of various sizes on the Notre Dame network and an off 
campus network. 

 

 
Figure 5. Elapsed time for pulling images of various sizes both 
on the Notre Dame secure network an on a network off 
campus.     
 
The Docker engine provides an infrastructure to cater to these 
larger, more complex environments known as Dockerfiles.  
Dockerfiles contain a series of commands used to set up the 
environment from a base image.  The Docker engine provides a 
framework to build the image from the series of command in a 
dockerfile. While the resulting environment may be hundreds 
of megabytes the Dockerfile from which it is built may only be 
a few kilobytes.  The Docker platform not only allows 
developers to ship an image with their application, but also a 
Dockerfile, which the user can then build themselves resulting 
in a much faster software transfer. 
     To further reduce the pull time for applications, Docker 
also provide a composition tool which allows a user to define 

Figure 6. An example of container composition support in 
Docker.  

a container in terms of a collection of more primitive 
containers. This decreases the pull time when components of 
an application are shared across containers. In the Figure 6, we 
define two containers, for OpenCL and CUDA execution. The 
red outline shows that a CUDA container is defined as a 
composition of a base Linux container, GCC tools, the 
NVIDIA driver, and CUDA tools. The OpenCL container, in 
green, is composed of a base Linux image along with the GCC 
and OpenCL tools. On nodes that use both CUDA and 
OpenCL containers, the node need not fetch the base Linux 
and GCC tools from the Docker repository. Like the 
DockerFile, the Docker composition is specified using a text 
file (called “���������	
����
	���and are composed 
using the ���������	
��� tool.  

VI. SCALABILITY 
The ease of creation and distribution of these custom 

environments gives developers the freedom to optimize their 
code without the need to focus on portability.  This freedom 
that containers offer has led to widespread adoption throughout 
the developer and user community with more than 100,000 
Dockerized applications and more than 33,000 GitHub projects 
with Docker in the name [11].  This growth is supplemented by 
other companies adopting the framework including Google. 

The rapid adoption of Docker in the development 
community is largely a product of Docker's ability to 
streamline the development process.  Virtual machines are 
shared in vendor proprietary repositories, creating vendor lock- 
in, which significantly hampers portability.  The shared 
operating system approach of containers offer a more 
lightweight and efficient solution to the portability issue as 
well as performance.  This feature, as well as drastically 
decreased overhead allows Docker images to be packaged in 
neat capsules containing only the application and its necessary 
dependencies.  The Docker engine provides support for 
unpacking and building the images through the use of 
Dockerfiles and the ability to compress and load images.  
Efficient packaging coupled with lightweight containers 

����� 

���	
���
 ������		

������	 ����	

������	��������� 
����	��������� 
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provide developers with the portability necessary to increase 
development and distribution speed. 

The foundation for this growth is Docker's online 
repository for functional environments: Docker Hub.  Docker 
Hub is a system of repositories similar to Github where users 
can upload images to public or private repositories.  Docker 
users can then pull these image and then run them as containers 
or build off of them.  As of early 2015 developers have 
downloaded over 320 million Docker images from the Docker 
Hub.  

VII. LIMITATIONS 
Though these containers provide less overhead than that of 

a virtual machine, which must include an entire operation 
system, containers can become large depending on the 
necessary libraries and binaries.  Images should be minimized 
as much as possible in order to adequately reduce network 
transfer time. In addition, images can be saved to tar files then 
compressed or shared via Dockerfiles, which are much 
smaller. 

In terms of portability Docker has some pitfalls, the most 
prominent being running the Docker engine on systems that do 
not use a Linux kernel.  The Docker engine requires a Linux 
kernel for support. To get around this issue, the Docker engine 
is run on top of a small Linux virtual machine on systems that 
do not have the necessary kernel. Additionally, applications run 
inside Docker containers on other operating systems must 
support running on the host system. 

VIII. CONCLUSIONS AND FUTURE WORK 
Docker containers offer a lightweight solution to 

virtualization and provide unprecedented access to accelerated 
approaches.  Containers utilize the kernel present on the host 
machine providing significantly less overhead than virtual 
machines.  Because of the lack of overhead, containerized 
applications perform as if they are run natively, with little 
performance loss. Containerized applications can easily be 
optimized for different accelerators as well, then shipped 
relatively quickly.  These applications can then run inside their 
respective containers on the native accelerator virtually no loss 
of performance.  The infrastructure for the growth of 
containerization is already in place with the series of online 
repositories and their web portal: Docker Hub. 

While there has been significant work done benchmarking 
Docker containers and comparing these environments to 
native and virtual implementations, all of the tests focus solely 
on the CPU performance.  This is partly because of a lack of 
Docker environments equipped for accelerated processing.  
This issue can be overcome by simply producing more of 
these environments and making them readily available on 
Docker Hub.  However, with such inconsistent acceleration 
methods and hardware, it is difficult to create an environment 
supporting the diverse accelerated approaches. The 
development of a common API for compiling and running 
programs that utilize accelerated approaches could use Docker 
to deploy environments suited for each application. The 
common API would allow faster development of the necessary 

Docker environment and thus quicker application deployment. 
While we have evaluated solutions to build on and have 
selected Tangram as basis for such a common API, the work to 
accomplish it necessitates further developments. Additionally, 
we intend to translate Tangram code into CUDA, OpenCL, 
OpenACC and other identified vendor interfaces, this new 
work will enable very efficient portable accelerator code for 
developers. To accomplish this great deal of work, we have 
written an NSF proposal with further partners acknowledged 
below and if the proposal is successful, we will start with four 
use cases as show cases: LTMDOpenMM, GPU-BLAST, 
SAMPO and Axparafit. This way we can provide our solution 
not only to developers but also to end user communities, 
namely the biology and co-phylogeny communities. 
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