
Enhancing the Usability and Utilization of
Accelerated Architectures via Docker

Nicholas Haydel
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, USA
 nhaydel@nd.edu

Sandra Gesing

Center for Research Computing, Dept. of Computer Science
and Engineering, University of Notre Dame

Notre Dame, USA
sandra.gesing@nd.edu

Ian Taylor
University of Notre Dame, USA

And Cardiff University, UK
itaylor1@nd.edu

Gregory Madey
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, USA
gmadey@nd.edu

Abdul Dakkak, Simon Garcia de Gonzalo

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana-Champaign, USA
dakkak@illinois.edu, Grcdgnz2@illinois.edu

�
Wen-mei W. Hwu

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana-Champaign, USA
w-hwu@illinois.edu

Abstract— Accelerated architectures such as GPUs (Graphics

Processing Units) and MICs (Many Integrated Cores) have been
proven to increase the performance of many algorithms
compared to their CPU counterparts and are widely available in
local, campus-wide and national infrastructures, however, their
utilization is not following the same pace as their deployment.
Reasons for the underutilization lay partly on the software side
with proprietary and complex interfaces for development and
usage. A common API providing an extra layer to abstract the
differences and specific characteristics of those architectures
would deliver a far more portable interface for application
developers. This cloud challenge proposal presents such an API
that addresses these issues using a container-based approach.
The resulting environment provides Docker-based containers for
deploying accelerator libraries, such as CUDA Toolkit, OpenCL
and OpenACC, onto a wide variety of different platforms and
operating systems. By leveraging the container approach, we can
overlay accelerator libraries onto the host without needing to be
concerned about the intricacies of underlying operating system of
the host. Docker therefore provides the advantage of being easily
applicable on diverse architectures, virtualizing the necessary
environment and including libraries as well as applications in a
standardized way. The novelty of our approach is the extra layer
for utilization and device discovery in this layer improving the
usability and uniform development of accelerated methods with
direct access to resources.

Index Terms—Virtualization, cloud computing, Docker, virtual
machine, accelerated architectures

I. INTRODUCTION
Cutting-edge parallel accelerators enable major

performance gains on a plethora of algorithms, e.g., the
accelerated versions of LTMDOpenMM [1], GPU-BLAST [2],
SAMPO [3]. However, the recent advancement and power of
such accelerators has grown disproportionality to their usage,
even though they are available as local resources for research
teams, as campus-wide resources or in distributed computing
infrastructures, such as XSEDE. In spite of significant
deployment of accelerators in the latter, the usage lags
dramatically. The underutilization is caused by multiple factors
such as insufficient cache bandwidth for diverse applications in
the case of Xeon Phis, proprietary interfaces, and device
discovery in general. While the first factor is a problem that
should be tackled by hardware providers, the second and third
problems can be tackled via software approaches. Recent
toolkits, such as the dedicated CUDA Toolkit for NVIDIA
GPUs [4], as well as OpenCL [5] and OpenACC [6], are
generally applicable for GPUs, APUs, and many-core
coprocessors providing extremely advanced APIs for utilizing
such architectures. However, developers must become deeply
familiar with diverse architectures and their specific
characteristics. Additionally, there are duplicated APIs for
common utilities e.g. to query for available devices and device
memory or the utilization of resources. Furthermore, the
developers often need to redevelop their code for each type and
generation of hardware. A common API therefore, would
provide a far more portable architecture for application
developers. This cloud challenge proposal addresses this issue

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-1-4503-3890-5/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.57

361

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-0-7695-5697-0/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.57

361

by providing a fully featured runtime environment, for
transparent targeted deployment of libraries, drivers and
applications for OpenCL, CUDA Toolkit and OpenACC. To
achieve this we use Docker-based [7] accelerator containers to
provide a virtualization of these libraries for deployment onto
various infrastructures.

Virtualization is the foundation of cloud computing to
enable virtual machine (VM) user environments on top of the
physical hardware. VMs allow developers to optimize their
applications for specific environments in order to decrease the
development time and increase efficiency. However, these
images can be large and require a hypervisor to facilitate
communication between the virtual machine and the host
operating system, thus hampering portability. Containers, on
the other hand, are based on shared operating systems and thus
more lightweight and efficient than hypervisors. Instead of
virtualizing hardware, containers 1) rest on top of a single
Linux instance with the ability to provide incremental
snapshots, 2) do not require the duplication that VMs need, and
3) provide a small, neat capsule containing the target
application and its dependencies. Using a tuned container
system can often provide four-to-six times as many server
instances per capacity compared to VMs. Containers use the
Linux LXC user space tools, where applications run with their
own file system, storage, CPU, and memory. While the
hypervisor abstracts an entire device, containers just abstract
the operating system kernel.

In this work we are motivated to provide a virtual
container-based accelerator environment to give developers the
freedom in which to develop the tools necessary for research
for deploying their accelerator-based applications. Docker
offers a lightweight, portable solution while providing
necessary virtual runtime environments. Docker containers
neatly encapsulate the application and the necessary
dependencies, without sacrificing performance. In this
proposal, we provide the architecture for the system and
demonstrate that using Docker containers to encapsulate the
accelerator toolkits is a viable proposition. We will show that
by using this approach compared to a native installation, there
is minimal performance loss when running applications that
utilize the available accelerators such as the GPU or MICs.

The remainder of this paper is organized in the following
way. The next section provides related work in the area of
accelerated toolkits and approaches. Section 3 describes the
architecture for the approach. Section 4 provides performance
measurements we have recorded using this system. Section 5
discusses the portability of the Docker containers and Section 6
provides the scalability characteristics of our approach. Section
7 discusses the limitations of the approach and in Section 8, we
conclude the work and briefly discuss future work we intend to
do.

II. RELATED WORK
Related studies to our work target two diverse areas. The

first are studies investigating whether Docker compared to
native solutions is feasible from a performance point of view.
Many of them are concerned with whether or not Docker can

close the performance gap between running applications in the
native environment and running them inside a virtual machine.
The second area involves approaches to ease the access to
diverse architectures via unified libraries and APIs to address
the challenge of utilizing novel architectures in the fast
changing hardware landscape. While building a common API
is future work, we have evaluated suitable frameworks.

A. Performance Studies
The first area is addressed by diverse publications.

Tommaso et al. [8] examine the impact of Docker containers
on the performance of bioinformatic tools when compared to
the native system. The paper specifies three use cases
concluding that the effect of Docker containerization of
applications on their execution performance is negligible.
Felter et al. [9] provide a comparison of native, container, and
virtual machine environments using benchmarks relevant to
cloud computing. The paper focuses on the performance
impact on server workloads, concluding that, in many cases,
container performance is equal to native performance while
virtual machines tend to fall short. Morebito et al. [10] provide
an evaluation of virtual machines, Docker, and native
performance using a variety of benchmarking tools. The paper
concludes that applications running in containers suffer from
minimal performance loss without the overhead associated
with virtual machines.

The majority of the evidence suggesting the viability of the
Docker platform as a lightweight virtualization solution
focuses on benchmarking Docker with applications run entirely
on the CPU. In this proposal we provide evidence suggesting
containerization as a viable solution for increasing the
accessibility of accelerated approaches. While there are
containers designed to facilitate the use of GPU’s and MICs
these containers are scarce.

B. Unified Libraries and APIs
The second area includes solutions with diverse foci for

unifying access to diverse architectures. Various studies have
been undertaken on performance portability techniques to
adapt to changing hardware. We intend to use Tangram [11] as
a C++ language extension that is applicable for diverse
accelerated architectures and CPUs. Tangram is based on the
idea that complex and highly optimized algorithm code for
different architectures can be automatically generated from a
set of simple code fragments called codelets.
 In the Tangram language, a codelet is a code fragment that
implements a particular computation. A spectrum is a unique
computation associated with a collection of functionally
equivalent codelets. Codelets in the same spectrum have the
same name and function signature, but have different
implementations. They can be implemented using different
algorithms or the same algorithm but different optimization
techniques.
 There are different types of codelets. Codelets can be
atomic or compound. Atomic codelets are self-contained while
compound codelets invoke other spectrums. Compound
codelets can be recursive if they invoke their own spectrum.
Codelets can be scalar or vector. The difference is that scalar

362362

codelets are oblivious to other elements of the same vector,
whereas vector codelets can communicate between them
under the assumption of Single-Instruction-Multiple-Data
execution timing. In other words, vector codelets may perform
actions unique to vector execution and are not meant to be
scalarized. Both scalar and vector atomic codelets define
computations on an element of an aggregate data structure
(similar to OpenCL/CUDA) and both are vectorizable. If a
spectrum is invoked from a function that is not a codelet, then
that function is called a host function.
 The Tangram language is designed as an extension of C++
with the qualifiers, primitives, and built-in containers (as in
functional languages). Tangram’s qualifiers assist with codelet
management (codelet, tag, env), vectorization (vector, shared),
and communicating optimization hints (mutable, tunable).
Tangram’s primitives assist with expressing common work
partitioning and data parallel operations. Tangram’s containers
– coupled with the primitives – make characterization of
memory access patterns and data flow easier, thereby making
transformations such as coarsening, tiling, vectorization,
privatization, blocking, and thread-level parallelization robust
and predictable.

 The Tangram language also provides support for
expressing atomic and compound codelets, map and iterator
utilities for expressing data parallelism, vector annotations,
and tuning knobs. The Tangram compiler is implemented with
the Clang and LLVM infrastructure. The compiler applies
coarsening of mapped functions, automatic data placement,
hierarchical composition of compound and atomic codelets,
algorithm selection, and pruning of the tuning space to
generate multiple kernels for the same computation pattern
customized for the target architecture. The runtime performs
Simultaneous Productive Micro-Profiling (SPMP) for more
accurate tuning-space pruning and input-driven adaptation.

Thread coarsening has been done for GPUs [12] as well as
for compiling from GPU-like programming models to CPUs
[13-20]. Data placement adaptation has been accomplished by
PORPLE [21] as well as prior works that focused on rule-based
methods [22]. Hierarchical composition of kernels for adapting
to various architecture hierarchies via nested parallelism has
been done by NESL [23]. Autotuning has been explored
thoroughly in the literature [24, 25]. Tangram unifies many of
these techniques in a single workflow and also adopts a run-
time approach based on hardware counters [26]. Performance
portability from a single source has been an area of great
interest. High-level languages such as Surge [27] have been
proposed for targeting CPUs and GPUs, providing containers
and primitive operations to the user. Surge does not support
hierarchical composition of codelets like Tangram does.
Libraries of algorithms and data structures for heterogeneous
computing, such as Thrust [28] have also been used to target
CPUs and GPUs from a single API. However, libraries are
limited to the library developer's ability to anticipate
architectures and tune to them, and do not have Tangram's
ability to automatically synthesize new kernels given new
device specs. Petabricks [29] allows the user to define codelets
function and supports composition (decomposition more

precisely) and autotuning. However, Petabricks focuses more
on system-level optimization like task scheduling, managing
data transfer among devices, or selection from methods or
library kernels. Tangram focuses on kernel synthesis and
architectural optimization for performance portability. Without
high-performance library kernels, performance gain from
system level optimization is limited. Delite [30] supports
performance portability from a single source by providing a
metaprogramming framework for creating domain-specific
languages, while Tangram is a general purpose language.

III. CLOUD ENVIRONMENT ARCHITECTURE
The ability to create virtual versions of operating systems,

servers, storage devices or networks has fostered the
development of modern computing with a heavy influence on
cloud utilization. Over the past few years we have seen
tremendous growth of virtualization in the area of cloud
computing. Virtualization has proved particularly useful in the
area of software development and distribution. Developers can
optimize their software for specific environments and provide
these environments in the form of virtual images. Platforms
such as VMware or OpenStack provide the infrastructure on
which these images can run. In addition, VMware and similar
software provide a sandbox in which the applications can run
without altering the configuration of the host system. This
provides an extra layer of security giving developers the ability
to scale the software freely. However, these images can be
costly in terms of memory because they require an underlying
operating system and kernel in addition to the necessary
dependencies for the application. Recently, there has been an
increasing trend in using Docker to virtualize the images of
runtime environments. Docker provides a platform for its users
to create environments with only the minimal dependencies for
the application. By utilizing the host kernel, Docker images
provide a scalable alternative to virtual machines, which can
accommodate increasing demands for virtualizations without
sacrificing performance.

Virtualization is particularly useful in the field of scientific
research. Software developed for simulations or mathematical
modeling are often based on certain hardware and software
requirements and being able to virtualize these environments
makes the applications more accessible to researchers. One
such application is SAMPO (Scalable Agent-based Mosquito
POint model) that uses OpenCL, a multithreading API
designed to utilize the GPU to model the prevalence of
malaria-vectors in a population [3, 31]. The program requires a
number of environment variables and libraries to be installed in
order to work, which could cause problems for researchers.
However, the initial setup can be done in a Docker container,
which can then be shipped as an image with the application.
Researchers will then be able to run the application inside the
container without needing to perform any further setup.

There are no specific hardware requirements for Docker
that are different from a virtual machine. It is the difference in
the necessary software systems between Docker and virtual
machines that make it a much more lightweight solution to
virtualization. The major difference is that Docker containers

363363

use shared operating systems as opposed to the hypervisor
system of virtual machines. This means that containers only
virtualize the kernel of the host operating system instead of the
entire device allowing for a more efficient use of resources.
This efficiency allows users to potentially run four to six times
the number of application instances as with virtual machines
[32]. Figure 1 shows the structure of a host machine running
multiple applications both inside and on the host machine.

 Figure 1: The software architecture of multiple containers on
a host system. Containers are coordinated by the Docker
engine while in parallel also other applications can run on the
host machine (App 3).
In addition to removing the hypervisor, containers utilize a
layered file system allowing them to share common files and
libraries when necessary. This is the foundation on which the
Docker engine's version system is built. Images can make use
of the pre-existing libraries and binaries during the build
process, decreasing build time and space consumption while
increasing portability. Computing resources such as CPU and
memory usage may also be dynamically allocated at the
runtime of the container.

IV. PERFORMANCE
Virtual machines typically perform slower than the host

system when given the same task due to unnecessary overhead
that come with the installation of an entirely new system.
While this may be only a minor inconvenience in some cases,
in other areas, specifically research fields, where computing
resources and availability are limited, execution time and size
of the programs need to be minimized. Docker offers a
minimal solution to this issue without sacrificing performance.
This is verified through a plot of similar data for a computation
heavy algorithm: SGEMM, a matrix multiplication algorithm.
The specific SGEMM implementation used to generate the
data utilized the GPU of the host system through the OpenCL
API (see Figure 2).

For both machines the plots of the execution times overlap
completely providing concrete evidence that running
applications in a Docker environment does not result in

performance loss. A comparison of the runtime of the SAMPO
simulation on a host machine with an NVIDIA GeForce GTX
700 GPU and in a Docker container on the same machine
suggests that there is little to no difference between running
programs on a host or in a Docker environment.

Figure 2. Execution times for the SGEMM algorithm on a host
machine and in a Docker container. Data was gathered from to
different machines one with an NVIDIA GeForce GTX 770
GPU and the other with an NVIDIA GeForce GTX Titan Z
GPU.

Figure 3. Run time of the SAMPO simulation both inside a
Docker container and on the host machine.

364364

Both SAMPO and the SGEMM implementation utilize the
available accelerators on the machine, which the Docker
engine supports through the use of runtime flags. The flag
used to specify the NVIDIA GeForce GTX 770 for the
SAMPO container is shown below in Figure 4.

Figure 4. Syntax for specifying available accelerators for a
Docker image to access.

V. PORTABILITY
Because of its neat encapsulation of runtime environments

and the ability to cater to the diverse accelerated architectures,
Docker provides a portable utility for accelerated approaches.
However, even without the unnecessary overhead associated
with providing a secondary operating system, Docker images
can become relatively large. When setting up an environment
for some applications the necessary dependencies can develop
into an image that might be too large to feasibly transfer over a
network. Figure 5 shows a plot of the pull times for Docker
images of various sizes on the Notre Dame network and an off
campus network.

Figure 5. Elapsed time for pulling images of various sizes both
on the Notre Dame secure network an on a network off
campus.

The Docker engine provides an infrastructure to cater to these
larger, more complex environments known as Dockerfiles.
Dockerfiles contain a series of commands used to set up the
environment from a base image. The Docker engine provides a
framework to build the image from the series of command in a
dockerfile. While the resulting environment may be hundreds
of megabytes the Dockerfile from which it is built may only be
a few kilobytes. The Docker platform not only allows
developers to ship an image with their application, but also a
Dockerfile, which the user can then build themselves resulting
in a much faster software transfer.
 To further reduce the pull time for applications, Docker
also provide a composition tool which allows a user to define

Figure 6. An example of container composition support in
Docker.

a container in terms of a collection of more primitive
containers. This decreases the pull time when components of
an application are shared across containers. In the Figure 6, we
define two containers, for OpenCL and CUDA execution. The
red outline shows that a CUDA container is defined as a
composition of a base Linux container, GCC tools, the
NVIDIA driver, and CUDA tools. The OpenCL container, in
green, is composed of a base Linux image along with the GCC
and OpenCL tools. On nodes that use both CUDA and
OpenCL containers, the node need not fetch the base Linux
and GCC tools from the Docker repository. Like the
DockerFile, the Docker composition is specified using a text
file (called “���������	
����
	���and are composed
using the ���������	
��� tool.

VI. SCALABILITY
The ease of creation and distribution of these custom

environments gives developers the freedom to optimize their
code without the need to focus on portability. This freedom
that containers offer has led to widespread adoption throughout
the developer and user community with more than 100,000
Dockerized applications and more than 33,000 GitHub projects
with Docker in the name [11]. This growth is supplemented by
other companies adopting the framework including Google.

The rapid adoption of Docker in the development
community is largely a product of Docker's ability to
streamline the development process. Virtual machines are
shared in vendor proprietary repositories, creating vendor lock-
in, which significantly hampers portability. The shared
operating system approach of containers offer a more
lightweight and efficient solution to the portability issue as
well as performance. This feature, as well as drastically
decreased overhead allows Docker images to be packaged in
neat capsules containing only the application and its necessary
dependencies. The Docker engine provides support for
unpacking and building the images through the use of
Dockerfiles and the ability to compress and load images.
Efficient packaging coupled with lightweight containers

�����

���	
���
 ������		

������	 ����	

������	���������
����	���������

365365

provide developers with the portability necessary to increase
development and distribution speed.

The foundation for this growth is Docker's online
repository for functional environments: Docker Hub. Docker
Hub is a system of repositories similar to Github where users
can upload images to public or private repositories. Docker
users can then pull these image and then run them as containers
or build off of them. As of early 2015 developers have
downloaded over 320 million Docker images from the Docker
Hub.

VII. LIMITATIONS
Though these containers provide less overhead than that of

a virtual machine, which must include an entire operation
system, containers can become large depending on the
necessary libraries and binaries. Images should be minimized
as much as possible in order to adequately reduce network
transfer time. In addition, images can be saved to tar files then
compressed or shared via Dockerfiles, which are much
smaller.

In terms of portability Docker has some pitfalls, the most
prominent being running the Docker engine on systems that do
not use a Linux kernel. The Docker engine requires a Linux
kernel for support. To get around this issue, the Docker engine
is run on top of a small Linux virtual machine on systems that
do not have the necessary kernel. Additionally, applications run
inside Docker containers on other operating systems must
support running on the host system.

VIII. CONCLUSIONS AND FUTURE WORK
Docker containers offer a lightweight solution to

virtualization and provide unprecedented access to accelerated
approaches. Containers utilize the kernel present on the host
machine providing significantly less overhead than virtual
machines. Because of the lack of overhead, containerized
applications perform as if they are run natively, with little
performance loss. Containerized applications can easily be
optimized for different accelerators as well, then shipped
relatively quickly. These applications can then run inside their
respective containers on the native accelerator virtually no loss
of performance. The infrastructure for the growth of
containerization is already in place with the series of online
repositories and their web portal: Docker Hub.

While there has been significant work done benchmarking
Docker containers and comparing these environments to
native and virtual implementations, all of the tests focus solely
on the CPU performance. This is partly because of a lack of
Docker environments equipped for accelerated processing.
This issue can be overcome by simply producing more of
these environments and making them readily available on
Docker Hub. However, with such inconsistent acceleration
methods and hardware, it is difficult to create an environment
supporting the diverse accelerated approaches. The
development of a common API for compiling and running
programs that utilize accelerated approaches could use Docker
to deploy environments suited for each application. The
common API would allow faster development of the necessary

Docker environment and thus quicker application deployment.
While we have evaluated solutions to build on and have
selected Tangram as basis for such a common API, the work to
accomplish it necessitates further developments. Additionally,
we intend to translate Tangram code into CUDA, OpenCL,
OpenACC and other identified vendor interfaces, this new
work will enable very efficient portable accelerator code for
developers. To accomplish this great deal of work, we have
written an NSF proposal with further partners acknowledged
below and if the proposal is successful, we will start with four
use cases as show cases: LTMDOpenMM, GPU-BLAST,
SAMPO and Axparafit. This way we can provide our solution
not only to developers but also to end user communities,
namely the biology and co-phylogeny communities.

ACKNOWLEDGMENT
The authors would like to thank the partners of the NSF

proposal: Nikolaos Sahinidis and Nikolaos Ploskas (Carnegie
Mellon University), who develop GPU-BLAST and
accomplished corresponding performance tests; Sudhakar
Pamidighantam (Indiana University), who brought in the
SEAGrid science gateway as application area and Christopher
Sweet and James Sweet (University of Notre Dame), who
develop LTMDOpenMM.

REFERENCES
[1] James C Sweet, Ronald J Nowling, Trevor Cickovski,

Christopher R Sweet, Vijay S Pande, and Jesus A Izaguirre,
"Long Timestep Molecular Dynamics on the Graphical
Processing Unit," Journal of chemical theory and computation,
pp. 9(8):3267-3281, 2013.

[2] Panagiotis D Vouzis and Nikolaos V Sahinidis, "GPU-BLAST:
Using graphics processors to accelerate protein sequence
alignment," Bioinformatics, vol. 27, no. 2, pp. 182-188, 2011.

[3] Klaus Kofler, Gregory Davis, and Sandra Gesing, "SAMPO: An
Agent-based Mosquito Point Model in OpenCL," Agent-
Directed Simulation Symposium (ADS 2014), Simulation Series
Vol 46 #1, pp. 36-45, Curran Associates, Inc., ISBN
9781629939469, 2014.

[4] CUDA, (http://www.nvidia.com/object/cuda_home_new.html).
[5] OpenCL, (https://www.khronos.org/opencl/).
[6] OpenACC, (http://www.openacc-standard.org/).
[7] Docker (https://www.docker.com/).Paolo Di Tommaso, Emilio

Palumbo, Maria Chatzou, Pablo Prieto, Michael L Heuer, Cedric
Notredame, “The impact of Docker containers on the
performance of genomic pipelines,” Peer J Prints, 2015.

[8] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan
Rubio. "An updated performance comparison of virtual
machines and linux containers." technology 28 (2014): 32.

[9] Roberto Morabito, Jimmy Kjallman, Miika Komu, “Hypervisors
vs. lightweight virtualization: a performance comparison,”
(http://www.researchgate.net/publication/273756984).

[10] Growth Statistics (http://venturebeat.com/2015/04/14/docker-
raises-95m-led-by-insight-venture-partners/)

[11] Li-Wen Chang, Abdul Dakkak, Christopher I Rodrigues, Wen-
mei Hwu, “Tangram: a High-level Language for Performance
Portable Code Synthesis,” Eighth Workshop on
Programmability Issues for Heterogeneous Multicores
(MULTIPROG-2015), Prague, January 2015.

366366

[12] Alberto Magni, Christophe Dubach, and Michael O'Boyle, "A
large-scale cross-architecture evaluation of thread-coarsening,"
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
2013.

[13] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady
Obeid, Li-Wen Chang, Nasser Anssari, Geng D Liu, and Wen-
mei W Hwu, "Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing," Center for
Reliable and High-Performance Computing, 2012.

[14] Nadav Rotem, "Intel OpenCL SDK Vectorizer," in LLVM
Developer Conference Presentation, 2011.

[15] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben
Sander, Benedict R Gaster, and Bixia Zheng, "Twin peaks: a
software platform for heterogeneous computing on general-
purpose and graphics processors," in Parallel architectures and
compilation techniques, 2010, pp. 205-216.

[16] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter,
Kalle Raiskila, Jarmo Takala, and Heikki Berg, "pocl: A
performance-portable OpenCL implementation," International
Journal of Parallel Programming, pp. 1-34, 2014.

[17] Ralf Karrenberg and Sebastian Hack, "Improving performance
of OpenCL on CPUs," in Compiler Construction, 2012, pp. 1-
20.

[18] Hee-Seok Kim, Izzat El Hajj, John Stratton, Steven Lumetta,
and Hwu Wen-Mei, "Locality-centric thread scheduling for
bulk-synchronous programming models on CPU architectures,"
in Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, 2015, pp.
257-268.

[19] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon
Jo, and Jaejin Lee, "SnuCL: an OpenCL framework for
heterogeneous CPU/GPU clusters," Proceedings of the 26th
ACM international conference on Supercomputing, pp. 341-352,
2012.

[20] John A Stratton, Sam S Stone, and Hwu W Wen-Mei,
"MCUDA: An efficient implementation of CUDA kernels for
multi-core CPUs," Languages and Compilers for Parallel
Computing, pp. 16-30, 2008.

[21] Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen, "Porple: An
extensible optimizer for portable data placement on GPU," in
Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 88-100.

[22] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli,
"Exploiting memory access patterns to improve memory
performance in data-parallel architectures," Parallel and
Distributed Systems, IEEE Transactions on, vol. 22, pp. 105-
118, 2011.

[23] Guy Blelloch, "Nesl: A nested data-parallel language,"
Pittsburgh, Technical Report 1992.

[24] Clint R Whaley, Antoine Petitet, and Jack Dongarra,
"Automated empirical optimizations of software and the
ATLAS project," Parallel Computing, vol. 27, pp. 3-35, 2001.

[25] Markus Püschel, José Moura, Bryan Singer, Jianxin Xiong,
Jeremy Johnson, David Padua, Manuela Veloso, and Robert
Johnson, "Spiral: A Generator for Platform-Adapted Libraries of
Signal Processing Alogorithms," International Journal of High
Performance Computing Applications, vol. 18, pp. 21-45, 2004.

[26] Shirley Browne, Jack Dongarra, Nathan Garner, Kevin London,
and Philip Mucci, "A scalable cross-platform infrastructure for
application performance tuning using hardware counters," in

Supercomputing, ACM/IEEE 2000 Conference, 2000, pp. 42-
42.

[27] Saurav Muralidharan, Michael Garland, Bryan Catanzaro,
Albert Sidelnik, and Mary Hall, "A collection-oriented
programming model for performance portability," in
Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2015, pp. 263-
264.

[28] Nathan Bell and Jared Hoberock, "Thrust: A productivity-
oriented library for CUDA," Astrophysics Source Code Library,
vol. 1, December 2012.

[29] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin
Zhao, Alan Edelman, and Saman Amarasinghe, "PetaBricks: A
Language and Compiler for Algorithmic Choice," SIGPLAN
Not., vol. 44, no. 6, pp. 38-49, June 2009.

[30] Arvind Sujeeth, Kevin Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun, "Delite: A
compiler architecture for performance-oriented embedded
domain-specific languages," ACM Transactions on Embedded
Computing Systems (TECS), vol. 13, pp. 134-134, 2014.

[31] SM Niaz Arifin, Ying Zhou, Gregory J. Davis, James E. Gentile,
Gregory R. Madey, and Frank H. Collins. "An agent-based
model of the population dynamics of
Anopheles gambiae." Malaria journal 13, no. 1 (2014): 424.

[32] James Bottomley, “Why You Need to Care about Container
Virtualization”, Collaboration Summit 2014,
http://collaborationsummit2014.sched.org/speaker/jejb_#.VgBg
Nnt2zyA, 2014.

367367

