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Who we are
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3811 N. Fairfax Drive
Arlington, VA 22203
W: 703-584-5840
C: 240-593-0980
skaisler1@comcast.net

π Greg Madey
Associate Professor
Dept. of Computer Science and

Engineering
University of Notre Dame
Notre Dame IN 46556
W: (574) 631-8752
gmadey@nd.edu

Source: Popp 2005
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Agenda

Session Time

I. Introduction to Computational 9:00 – 10:15
Social Science
Break

II. Hidden Markov Models 10:45 – 12:00
Lunch

III. Social Network Analysis 1:00 – 2:15
Break

IV. Agent-Based Simulation 2:45 – 4:00
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A
(Brief)

Introduction
To

Computational Social Science
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I. Introduction to Q/CSS

π Brief Outline:
– Definition of Q/CSS
– Brief Historical Perspective
– Why Is It Important Now?
– Examples of applications of Q/CSS

Takeaway:
Q/CSS is a viable “third leg” of the stool that
complements theory and
experimentation/field studies to elicit
understanding and new concepts.

Assumption:
Social Sciences are structurally equivalent to
Natural Sciences and so methodological
propositions that apply to natural sciences are
transferable
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What is Q/CSS?

π Quantitative/Computational Social Science (CSS)
is about:
– developing integrated models of human, technical,and environmental systems
– based on accepted principles in the social sciences (e.g., economics, anthropology,

geography, political science, sociology, demography, ethnography, public policy,
psychology, and their sub- and cross-disciplines, etc)

– supported by mathematical and physical science principles
– investigating and experimenting in situations where direct observations of human behavior

are not possible or not ethical
– developing new theory and insights that can be applied from the artificial to the natural world

π Two Aspects:
– Methodological
– Substantive ?
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Substantive vs. Methodological

Pure Applied

Basic theory-driven CSS
research for understanding
information processing 
and computation in real social
systems

CSS methods used in basic
research: Simulation tools,
Physical, Mathematical, and
Medical principles

CSS methods for applied uses

Substantive

Methodological

Uses extant methods applied
to intervention-oriented,
issue-specific CSS research

CSS methods as decision 
Tools for solving complex 
socio-technical problems

Source: C. Cioffi-Revilla
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Why Is Q/CSS Important Now?

π Information and Risk are perennial issues with decision makers:
– Without information, we cannot make rational decisions

– Information about the future is usually imperfect and subject to uncertainty

π Risk is inherent in any decision process, e.g., the low probability of
extreme events

π People still make decisions about risky situations
π Q/CSS models can assist in making such decisions, by shedding new

light on uncertainty
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Thus, we observe …

“God chose to give all the easy
problems to the physicists.”

—Michael Lave & Jim March, Introduction to Models in the Social Sciences
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Why Do We Model?

π To overcome linear thinking: We cannot understand
how the various parts of the system interact and add up to the
whole

π To discover the space of behaviors and cascading effects that
real social systems can realize

π To foresee novel events that our mental models cannot even
imagine

π To conduct virtual experiments on simulated social worlds on
many scales

In summary, we model for three key reasons:
1. To gain insights into key variables and their causes and effects
2. To construct reasonable arguments as to why events can or

cannot occur based on the model
3. To make qualitative or quantitative predictions about the future
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Models, Models, …

π Descriptive, Prescriptive and Predictive Models
– A model that attempts to describe the best or optimal solution of a

system
• Provides insight
• Perhaps create requirements
• Actionable Options Evaluations

– The “what’s best” & “what if” questions
– Aid in selecting the best alternative solution for decision problems
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Cause and Effect

π According to Hume, causation is a learnable habit
of the mind:
– When we see that two things go together, we learn that one “causes”

the other (but,… caution about spurious correlations)
– When the flame burns us, we learn to keep away from it

π In our everyday lives, we generally assume that people express
rational behavior.
– Certainly, driving one’s car to work in Washington, D.C. is an example.
– People react to changes in the world in a way that is in their best

interests, privately
– People generally learn cause and effect, and seek to optimize (Simon:

“satisfice”) them for their own benefit
π Simon’s principle: Social complexity is the result of (is caused

by) the behavior of simple actors as they adapt to their
complex environments
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What’s The Problem?

π Most pre-computational social science models are linear:
– Linearity is based on independence of elements
– Linearity  is a good modeling technique for simple systems
– The linearity assumption implies that the whole is equal to the sum of its parts!

π We know a lot about:
– Individuals (through surveys)
– Aggregated as groups and populations
– On a domain-specific basis

π We know a lot less about interactions among individuals and groups:
– How social structures form; how protocols emerge and the interactions in large groups and

among subgroups
– How and why do group structures (and their protocols) change
– What the content of interaction is: influence, power, imitation, exchange, association

BUT:
π Social science systems are not simple,….

π The whole may be greater (or lesser) than the sum of its parts!!

π Modeling the dynamics is (very) hard …
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The Problem is Complexity!

π Wicked problems have incomplete, contradictory, and
changing requirements
– solutions to them are often difficult to recognize as such because of

complex interdependencies.

π Rittel and Webber (1973) stated that while attempting to solve a
wicked problem, the solution of one of its aspects may reveal
or create another, even more complex problems.

π Complexity—systems of systems—is among the factors that
makes wicked problems so resistant to analysis and, more
importantly, to resolution

π Wicked problems are adaptive, e.g., the (partial) solution
changes the problem
– Is there a restatement of Heisenberg's Hypothesis here??
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Wicked Problems

π Characteristics (Ritchey 2005):
1. There is no definitive formulation of a wicked problem.
2. Wicked problems have no stopping rule.
3. Solutions to wicked problems are not true-or-false, but better or worse.
4. There is no immediate and no ultimate test of a solution to a wicked problem.
5. Every solution to a wicked problem is a "one-shot operation"; because there is

no opportunity to learn by trial-and-error, every attempt counts significantly.
6. Wicked problems do not have an enumerable (or an exhaustively describable)

set of potential solutions, nor is there a well-described set of permissible
operations that may be incorporated into the plan.

7. Every wicked problem is essentially unique.
8. Every wicked problem can be considered to be a symptom of another problem.
9. The existence of a discrepancy representing a wicked problem can be explained

in numerous ways. The choice of explanation determines the nature of the
problem's resolution.

10. The planner has no right to be wrong (planners are liable for the consequences
of the actions they generate).
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Examples of Wicked Problems

π Global Warming
π War on terrorism
π Sprawl and Sustainable Development
π A National Healthcare System for the U.S.
π World Hunger
π Energy Crisis: When the Oil (Coal) Runs Out?
π Large-Scale Software Development
π Epidemic: Worldwide Explosion of Ebola/Marburg/…
π Emergent Systems

π And, your favorite social science problem here!!
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What is Complexity?

π Complex: consisting of interconnected or interdependent parts
– Not easy to understand or analyze

π Simple systems: An oscillator, a pendulum, a spinning wheel,
an orbiting planet

π Complex Systems: Government, an economy, families, the
human body—physiological perspective, a
person—psychosocial perspective, the brain, the ecosystem of
the world

no
n 
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What is Complexity Theory?

π Complexity theory is a scientific framework that explains
how rules govern emergence and the constraints mediating
self-organization and system dynamics.

π The science of complexity, is not a single body of theory, but
rather is comprised of a collection of fields, including:

– Artificial Intelligence (AI)
– Cognitive science
– Ecology
– Evolution
– Game theory
– Linguistics
– Social science
– Artificial Life
– Computer science
– Economics
– Immunology
– Philosophy … among others
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Complexity Issues

π Complex behaviour originates from the operation of simple underlying rules (Simon’s
conjecture).

π But, sometimes, deducing behaviour from rules is not possible.
π There is no practical way to study the network of causality in detail.
π Therefore, we need ways to synthesize understanding from large state spaces and

multidimensional meshes
π However, the spectre of computational intractability haunts the space between rules and

consequences.

Complexity
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     Simplicity
     (Machines)

3)  Organized
     Complexity
     (Systems)
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Q
ua

nt
ity

 o
f O

bj
ec

ts

Combinatoric
Exponential
Explosion

Law of Large
Numbers

 ε ~ ( n ) ** 1/2

 Law of Medium Numbers is…
Murphy’s Law

MICRO

MACRO

MESO

From:  G.M. Weinberg,  An
Introduction to General Systems

Thinking,
John Wiley & Sons, New York, 1975,

p 18.



HICSS-41 CMSOS Copyright 2007 Steve Kaisler/Greg Madey CMSOS-20

Assessing Types of Systems

Activity Simple System Complex System Adaptive System

Number of States
A few possible

states only
(10s)

Many states
(100s)

Unbounded
(1000s and more)

Connectivity
Static Connections;

unidirectional;
no learning

Varying connections,
but slowly changing;

May learn

Dynamic connections;
Local & global actions;

Self-modifying

Behavioral Pattern
Predictable behavior w/

Reasonable
Accuracy

Highly unpredictable,
possibly chaotic

behavior

Emergent behavior  w/
Ability to adapt

& learn

Typical Example
Heating & Air
Conditioning

TVs

Collapsing sand piles
Tornadoes

Nation-states,
Biological Systems
Society & Culture

Computational
State

Static;
Statistical

Self-modifying in
Parameters

Self-modifying in
Control &
Actions
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Complex System Characteristics

π Tightly Coupled
“Everything influences everything else”
“You can’t just do one thing”

π Dynamic
Change occurs at many time scales

π Policy Resistant
Many obvious solutions to problems fail or actually worsen the 

situation

π Counterintuitive
Cause and effect may be distant in time and space

π Exhibit Tradeoffs
Long term behavior is often different from short term behavior
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Q/CSS Challenges

π Are Computational Models Predictive Under Uncertainty?

π In scientific computing, simulation credibility requires:
– The fidelity of a model’s predictions to empirical data (verification)
– The degree to which the model is robust under uncertainty
– The accuracy of the model in predicting phenomena in regions where

experiments haven’t been conducted

π Main tradeoffs:
– High fidelity models may be less robust to uncertainty
– Models more robust under uncertainty may be less consistent in their

predictions
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Q/CSS Challenges

π Can we develop computation models as tools for a user
community?

π Consider computational models as tools like a hammer or a
screwdriver:
– Don’t need to know a lot about their construction to use them

π Scientific models
– Require the user to know a lot about the guts before they can be used

productively
– Have complex structures where knowledge may be represented in

multiple ways
– Interpreting the model’s output in a decision environment w/ significant

consequences requires considerable cognitive familiarity with the model
and the domain
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Q/CSS Challenges

π Can we trust the output of computational models
over human judgment?
– Models represent the current knowledge of a domain and problem

space
– Users may be wary of computational technologies that promise

prediction, but whose workings they don’t understand
– Verification and validation require a considerable research investment in

the code
π Human judgment will always be an irreducible component of

complex decision making
– Computational models will not eliminate this role (anytime soon)

When a distinguished but elderly scientist states that something is possible, he is almost certainly right.
When he states that something is impossible, he is very probably wrong.
—Arthur C. Clarke, Report on Planet Three
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Q/CSS Challenges

π Q/CSS is still an emerging discipline, but one that is mature in
some areas

π Most systematic studies of human behavior that follow the
scientific model of research have analyzed numbers:
– But, most human knowledge is represented in natural language in

textual form
– How to extract the relevant data in order to utilize it?

π Are numerically-based simulations the best way of studying
human behavior and interactions in different social milieu?

π How can we best exploit object-oriented modeling (OOM) and
OOP (programming) simulation for modeling social systems
and processes?

π Could OOM provide social science what the calculus provided
physics?
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Q/CSS Models

Indicators & Warning (I&W) Indicators of warfare and potential conflict, based on quantitative
Information found in open source statistical datasets.

Dynamical Systems Differential or difference equations of low-dimensionality representing
competing adversaries (including the systems dynamics approach).

(Hidden) Markov Models
Time-phased data is aggregated at fixed intervals with scaled values
separate from the underlying events. A set of discrete states and
associated probabiliities; data drives transitions between states.

Events Data Analysis Based on abstracting and coding high-frequency streams of short-term
interaction occurrences exchanged among adversaries.

Econometric &
Sociometric models

Large-scale aggregate models of social actors, states or regions in the
international systems

Probabilistic Models Logistic regression, e.g., estimates the probability that a given variable will
affect the expected outcome.

Principal Components
Analysis

Dimensionality-reduction technique for extracting a low-dimensionality
space from high-dimensional data

Game Theoretic
Models

Based on the application of 2-person and n-person games to social
situations with strategic interdependence.
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Q/CSS Models

Expected Utility Models Applications of Bayesian Decision Theory to individual or collective
choices 

Control-theoretic Models Applying linear, non-linear, and optimal control theory principles to
Interactions among social and political entities

Survival Models
Based on modeling the hazard rate or intensity function of a social
process, which are capable of integrating stochastic and causal
variables into unified models of social dynamics.

Evolutionary Computation

State Transition Systems Based on modeling interactions among social and political entities as
transitions between known states (including cellular automata/Petri nets)

Graph & Network Theory Including artificial neural networks (ANNs) and Social Network Analysis
(SNA)

Agent-Based Simulations Applications of multi-agent systems to simulate human and social 
dynamics in complex environments 

Field Models Spatial models of human and social dynamics based on the effect of
distance metrics on interactions

Applying a variety of evolutionary methods (e.g., genetic algorithms)
To social simulation models 
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What Follows …

π We present three sessions on applying different types of
computational models to social and organizational systems
– Hidden Markov Models
– Social network Analysis
– Agent-Based Simulation
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π Pick a (problem, issue or question) of interest to you
π If possible, observe real-world situations and collect data
π Understand the underlying theory
π Devise an experimental approach
π Built a model of the phenomena
π Experiment!!
π Interpret the results
π Write one or more quality paper(s)

The Computational Social/Organizational Science
Process

This tutorial focuses on these
two topics
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Introduction - References

π Carley, K.M. 1995, "Computational and Mathematical Organization Theory:
Perspective and Directions." Computational and Mathematical Organization Theory,
1(1): 39-56

π Langton, Christopher G., 1988, “Artificial Life”, Artificial Life, Langton (Ed.), SFI
Studies in the Sciences of Complexity.

π Ritchey, T. 2005. "Wicked Problems: Structuring Social messes with Morphological
Analysis", Swedish Morphological Society, http://www.swemorph.com/wp.html

π Rittel, H. and M. Webber. 1973. "Dilemmas in a General theory of Planning", in Policy
Sciences, Vol. 4, Elsevier Scientific, Amsterdam, the Netherlands, pp. 155-169
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HMM
Hidden Markov Models
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History

π Andrey Markov, 1856-1922
– Russian mathematician
– Stochastic processes

• Markov processes
• Markov chains
• Markov property

π Leonard E. Baum, Ted Petri, et al.,
late 1960’s
– Institute for Defense Analyses (IDA),

Princeton, N.J.
– Several papers in mathematical statistics
– Hidden Markov Models

π Speech recognition starting in the
1970’s

π Biological sequence analysis starting
in the 1980’s Andrey Markov
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Mathematical Context

π Deterministic processes
π Stochastic processes (random

processes)
π Markov process / Markov chain
π Markov property / memoryless property
π Examples
π Hidden Markov Model
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Hidden Markov Model

π A Markov Model with unknown
state parameters

π Parameters influenced by
unknown state parameters are
observable

π Forward-backward algorithm
π Viterbi algorithm
π Baum-Welch Algorithm

Probabilistic parameters of a
hidden Markov model
x — states
y — possible observations
a — state transition probabilities
b — output probabilities
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An Example Application: WIPER System

π Wireless Phone-based Emergency Response System
– Supported in part by the National Science Foundation, the DDDAS

Program, under Grant No. CNS-050312 (PI’s: Barabasi, Madey)

π Functions
– Detect possible emergencies
– Improve situational awareness during emergencies

π Cell phone call activities reflect human behavior
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Data Characteristics

π Two cities:
– Small city A:

• Population – 20,000     Towers – 4
– Large city B:

• Population – 200,000   Towers – 31

π Time Period
– Jan. 15 – Feb. 12, 2006

π HMM Analysis
π Agent-based modeling
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Tower Activity

Small City (4 Towers)
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Tower Activity

Large City (31 Towers)
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15-Day Time Period Data

Small City
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15-Day Time Period Data

Large City
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Observations

π Overall call activity of a city are more uniform
than a single tower

π Call activity for each day displays similar trend
π Call activity for each day of the week shares

similar behavior
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MMPP Modeling

: Observed Data

: Unobserved Data with normal behavior

: Unobserved Data with abnormal
behavior

Both         and          can be
modulated as a Poisson Process.
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Modeling Normal Data

π Poisson distribution

π Rate Parameter:  a function of time

~
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Adding Day/hour effects

Associated with Monday, Tuesday … Sunday

: Average rate of the Poisson process
  over one week

: Time interval, such as minute,
   half hour, hour etc
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Requirements

:  Day effect, indicates the changes 
    over the day of the week
:  Time of day effect, indicates the 
   changes over the time period j on 
   a given day of i
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Day Effect
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Time of Day Effect
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Prior Distributions for Parameters
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Modeling Anomalous Data

π            is also a Poisson process with
rate

π Markov process A(t) is used to
determine the existence of anomalous
events at time t
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Continued

π Transition probabilities matrix
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MMPP  ~  HMM

π Typical HMM
   (Hidden Markov

Model)

π MMPP
(Markov Modulated
Poisson Process)
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Apply MCMC

π Forward Recursion
– Calculate conditional distribution of

P( A(t) | N(t) )
π Backward Recursion
– Draw sample of           and

π Draw Transition Matrix from
Complete Data
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Anomaly Detection

π Posterior probability of A(t) at each time t
is an indicator of anomalies

π Apply MCMC algorithm:
– 50 iterations



HICSS-41 CMSOS Copyright 2007 Steve Kaisler/Greg Madey CMSOS-55

Results
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Continued
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Conclusions - WIPER Example

π Cell phone data reflects human activities on
hourly, daily scale

π Hidden Markov Modeling provides a method of
modeling call activity, and detecting anomalous
events
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Summary

π Markov Modeling is a mature method for analysis of time
series data
– Efficient algorithms
– Software available

π Popular applications
– Speech recognition
– Machine translation
– Vision
– Cryptographic analysis
– Bioinformatics

π Potential new applications
– Social network analysis - temporal analysis
– Organizational behavior
– Consumer behavior
– Intrusion and anomaly detection
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Social
Network
Analysis

Stanley Milgram
“6 Degrees of Separation”Duncan Watts

Steven Strogatz
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What is SNA?

π A method based on formal graph theory that:
– provides a set of techniques for analyzing the structure of networks
– where the linkages between the nodes are well-defined social relations

(e.g., cooperation, enmity, trade), including multiple 1-to-1 relations.

π Used extensively in sociology, anthropology, and psychology in the
study of human social networks.

π Key Ideas:
– Network nodes are people (groups), links are relationships (contacts)
– Who is connected closely to whom (path length, clustering)?
– Who is key in the network (centrality)?
– Can we infer a large network structure from a very small amount of data

(hidden networks, cells)?
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SNA Characteristics

π Most empirical social networks
are neither random …

π  nor regular

π but complex …
π Social network analysis is

focused on uncovering the
patterns of people's
relationships
(interconnectedness) and
interactions

π Analysis can produce
understanding as well as action

Source: James Moody, 2000
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A Quick Review of Network Concepts - I

π Node Properties:
– Fixed attributes
– Variable attributes (size, beliefs, opinions, capacity, goals, etc)
– Activation thresholds (critical fraction of neighbors in a particular state)
– Network location (centrality)

π Centrality:
– Distinguishes “insiders” from “outsiders”; measures the impact of

removing a node (and, perhaps, isolating a sub-network)
– Degree: number of links (to, from) a node.
– Closeness

• Takes into account not only node k degree but also the degree of k's
neighbors.

• The reciprocal of the sum of geodesics between a node and other nodes.

– Betweenness: the number of geodesics that pass through a node
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A Quick Review of Network Concepts - II

π Edge: Direct link, tie, or “arc” connecting nodes
– Symmetric, undirected (e.g. marriage, alliance, warfare)
– Asymmetric, directed (e.g. employment, insurgency)
– Strength, value (e.g. frequency of interaction, weight)
– Valence (positive or negative influence on to node)

π Network Properties:
– Connectivity -- how easy is it to get from one node to another?

• A graph is connected if every node is reachable from every other node
• Geodesic: If one node is reachable from the other, what is the shortest path between

them?
• Kevin Bacon Game of 6 Degrees of Relationship, based on Stanley Milgram’s small-

world discovery of six degrees of separation

– Mean geodesic: the average path length over all pairs of connected
nodes.

– Redundancy: How many different paths connect each pair?
– Density: the number of paths divided by number of possible paths
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A Quick Review of Network Concepts - III

π Network Properties:
– Clustering: Given a group of nodes, the number of links between the

nodes in the group is greater than the sum of the number of links to
nodes outside the group

π See more slides in Appendix
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SNA – Basic Ideas

π People have interconnections with other people
– These can be represented as a simple graph

π Patterns of relationships and interactions emerge from analyzing
this graph

π Information flows along the edges of the graph that represent
connectedness between two people

π To understand the interactions and structure, identify and follow the
patterns

π Once we know the connectedness and the information flow, we can
develop intervention mechanisms to create, destroy, reinforce or
change the patterns
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Where Can SNA Be Used?

π Organizational Psychology
π Epidemiology
π Homeland Security
π Social Engineering
π Analyzing connectivity through email

– ENRON Mail Database
π Analyzing corporate interactions

– Trust in Virtual teams (Ahuja et al 2006)
π Politics

– Political Contests and Elections
– Analysis of Iranian Government (Deckro et al)

π Intelligence Analysis
– Terrorism Relationships
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SNA & Organizational Modeling

π Identify personnel with vital knowledge and connections
that may be targeted for retention/reward

π Increase innovation, productivity, and responsiveness of the
organization by plugging “know-who” gaps

π Establish key knowledge roles in order to make smarter decisions
about organizational changes

π After restructuring, mergers, or acquisitions, gain insight into
challenges of knowledge transfer and integration across the melded
organization

π Example: Developing an Enterprise System Architecture (see the
EA minitrack)
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Social Network Analysis: Trade Analysis

© Lothar Krempel. OECD Trade, 1992. New York Hall of Science.

π Examine the Foreign trade of
countries based on the types of
products they import/export

π Size of spheres is measure of
trading volume

π Problem: Need better tools to
visualize the linkages and
navigate through this complex
network

π Examine over time the
fluctuations in the size of the
spheres and the flows across
the links
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Social Network Analysis: Erdos Numbers

π Explore Scientific Collaboration
π Erdos Numbers: http://www.oakland.edu/enp/

– Distance of an author to a collaboration with Paul Erdos (d. 1996)
– Vertices: math and compsci researchers
– Had 507 co-authors

π Rules:
– If you co-authored a paper with Erdos, your Erdos number is 1
– If you co-authored a paper with someone who authored a paper

with Erdos, your number is 2
– And, so on ….

π How does one navigate in such a network?
π What does it tell us?

– Probably need to augment links with topics of papers
– Add geolocations of co-authors
– Low Erdos numbers are possessed by many Fields

Medalists and Nobel Prize Laureates
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SNA: Iranian National Government

π Social Closeness: a ratio
reflecting the maximum potential
one person or group (i) has on
another person or group (j)

sij = a(skl), a > 0, i /= j, k /= l
π Assume primary membership 3x

administrative membership
π Assume secondary group

membership 2x as administrative
membership

π Based on weighted membership,
Khatami seems to have the
greatest influence

π Represents strength in given
organizational hierarchy

Ref: Renfro and Deckro. 2001. A Social Network Analysis of the
Iranian Government, 69th MORS Symposium
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SNA: Iranian National Government

π Let xij = the flow of influence
over
the edge from i to j
– Let s = influencer node; t =

influenced node
π Maximize z – the maximum

flow – subject to:
Σj xsj – z = 0
Σj xij – Σj xji = 0 for all i
z - Σi xit = 0
0 <= xij <= sij for all i,j

π Assume importance of
context, e.g., Rafsanjani was
formerly President of Iran

π Rafsanjani has greater
influence, so target him in any
operation
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Methodology: Creating an SNA

π Determine the boundaries of the social/organizational space
– A single unit of an organization or a small group of people
– Several units of an organization
– Establish an initial reachability value, e.g., how many extent links from each node

will you consider

π Determine the attributes and interactions that you will record
– What data about each node
– What data about each interaction: type, frequency, duration, location, etc.

π Develop a survey instrument
– A checklist for questions you want to individuals or interactions you want to

observe in a group setting (such as a meeting)

π Develop a schedule and a roadmap
– When will you (re-)interview selected individuals or observe meetings
– Plan to update as the interviews/observations proceed
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Methodology: Creating an SNA

π Review Documentation (if any):
– Obtain and review the formal documentation for an organization or

business unit
– Use checklist(s) to fill in survey forms
– Draw some initial graphs to get a rough idea of the formal network(s)

and hierarchies
– If allowed, review emails relating to projects; may get an idea of informal

networks

π Revise interview list based on rough draft of formal networks
π Develop interview questions
π Conduct interviews

– Distribution, Roles, trace rough formal network(s)
– Schedule backup interviews to cross-check information
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Methodology: Creating an SNA

π Analyze Data:
– Create an adjacency matrix
– Calculate measures

Distance: diameter of the network
Density: %-age of connections that

exist out of total number
possible

Centrality: measure of the extent to
which the network is
organized around a few
people or nodes

Degree: # People connected to me –
in my unit; all other units
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Methodology: Analyzing an SNA

π Numerous Approaches:
– ERGM - Exponential Random Graph Models (Wasserman, Pattison, Robins,

Snijders, et al)
– Network Evolution – Actor oriented models  (Snijders, Steglich)
– Positional analysis – generalized block modeling (Batagelj)
– Autocorrelation Models (Leenders)
– Spectral analysis (Richards, Seary)
– Multi-relational, multi-rater networks (Koehly, Corman)
– Sampling, missing data (Wasserman, Butts)

π Example: Monte Carlo techniques for Maximum Likelihood Estimation of
ERGM:
– Simulate a distribution of random graphs from a starting set of parameter values and to

refine these estimated parameter values by comparing the distribution of graphs with
observed graph until parameter stabilizes.

– But, Monte Carlo is computationally intensive
– # Parameters to obtain a good distribution
– Scalability: nodes, # relationships, complexity
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Methodology: Modeling an SNA

π A wide variety of tools:
– AGNA, GRADAP, NetDraw, Pajek, PGRAPH, et al
– Huisman, M.  & Van Duijn, M. A. J. (2005). Software for Social Network Analysis.

In P J. Carrington, J. Scott, & S. Wasserman (Editors), Models and Methods in
Social Network Analysis (pp. 270-316). New York: Cambridge University Press

π Network Simulation:
– System Dynamics (VENSIM)
– Agent-Based Simulation (Repast, MASON, SWARM, Madkit)
– Computational Network Models (NetLOGO)

π Issues:
– Reusable
– Transparency
– Multi-scale simulations
– Analysis of simulation models on benchmark data to explain variance
– Theoretical testing and empirical validation



HICSS-41 CMSOS Copyright 2007 Steve Kaisler/Greg Madey CMSOS-78

Methodology: Visualizing an SNA

π Visualization:
– An (animated) image of a network is easier to comprehend, search, and navigate

through than a list of millions of (dynamically changing) node-node pairs
– A major means to represent and communicate scientific results -- across

scientific boundaries

π Example: Pajek (Batagelj), JUNG (Fisher)

π Issues:
– Eye candy vs. effective, navigable visualizations
– Visualization of data origin, provenance, accuracy, uncertainty as annotations
– Tools for data analysis and visualization to help people make sense of very

large, dynamically evolving datasets
– Scalable, interactive/iterative specification of data analysis and data mappings
– Visualization (see http://www.visualcomplexity.com/vc/)
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Methodology: Maintaining an SNA

π Challenge: Social networks change over time
– How to track – periodically – changes
– How stable are relationships that are detected

π Challenge: Resolve inconsistencies in information
– Conflicting Data
– Assigning responsibility for sources; weighting reliability

π Challenge: Expressing Dynamics
– (Human) Networks are self-organizing systems
– How to reflect dynamics of interaction in social networks
– Suggestions:

• Use Petri nets
• Use System Dynamics
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SNA: Interventions for EA

π Enterprise Architecting (EA) is the process of analyzing
the IT operations of an organization
– We (Armour and Kaisler) use SNA approaches as an analysis tool

π Some Interventions we have recommended:
– Structural:  Introduce new personnel into specific roles to facilitate
                       IT and business operations; relocate business or IT
                      operations
– Developmental: Accelerate adoption of new technology to facilitate
                      exchange and processing of data; establish links between
                      people and applications to get data where it is needed
– Functional: Recommend changes in duties, operational responsibilities,
                      etc to improve performance and information flow
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Building a Personal Social Network

π Ask yourself these questions (after Webster 2003):
Q1.   Suppose you need sugar or something like that and the shops are closed, or you need a piece of equipment.  Who would you ask to lend

you these sort of things?

Q2.   Suppose you need help with jobs in or around the house,   for instance holding a ladder or moving furniture.  Who would you ask for this
kind of help?

Q3.   Suppose you have problems with filling informs, for instance tax forms.

         Who would you ask for help with such problems?

Q4.   Most people from time to time discuss important matters with  others.  Looking back over the last six months, who are the people with
whom you discussed matters important to you?

Q5.   Suppose you need advice with a major change in your life,  for  instance changing jobs or moving to another area.

         Who would you ask for advice if such a major change occurred in your life?

Q6.   Suppose you have the flu and must stay in bed for a  couple of days. Who would you ask to take care of you or do some
shopping?

Q7.   Suppose you need to borrow a large sum of money.  Who would you ask?

Q8.   Suppose you have serious problems with your partner which you cannot discuss with him or her.

With whom would you talk about such problems?

Q9.   Suppose you are feeling depressed and you want  to talk to someone about it.

               With whom would you talk about such problems?

Q10.  With whom do you go out once in a while, for instance shopping, going for a walk, going to a restaurant, or to a movie?

Q11.  With whom do you have contact at least once a month, by visiting each other for a chat, a cup of coffee, a drink, or a game of
cards?

Q12.  Is there anybody else who is important to you, not mentioned so far?   Relatives, or co-workers who are important to you?
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SNA Principles

1. Networks are often Invisible
2. People link with others who are Similar

– homophily matters

3. People talk with those who are Physically Close
– proximity matters

4. People who are Similar & Close form Clusters
5. Info quickly Spreads within Dense Clusters

– people in the same clique know the same info

6. Information gets Trapped in Clusters
7. “Bridging Ties” assist information/knowledge Flow between Clusters

– “opinion leaders” have connections to multiple clusters

8. Weak Ties are Surprisingly Strong
– acquaintances are important sources of novel information

9. The Net nurtures weak ties
– explains why information travels much faster today

10. Networks go across domains
– users and non-users talk about multiple product categories
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SNA: Challenges

π How do social networks explain large social phenomena
such as:
– diffusion of ideas
– Individual and group creativity
– political movements and action
– infectious diseases (AIDS, Avian flu) spread/epidemics
– online retailing
– mobilization to prepare, respond and recover from disasters?

π What are the results of social networks?
π How do we interpret the results from social networks?
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Social Network Analysis:  Challenges

π How do social networks change over time?
– How do interaction patterns dynamically relate to structural position in

the network?

– Why do people sharing relationships tend to be similar?

– Can one predict formation or break-up of communities?

π What effect does {location, gender, race, … } have on social
networks?
– What are the spatio-temporal distributions of interactions?

– How do people serve as hubs and bridges between people and
organizations?
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Social Network Analysis: Challenges

π Can be hard to observe relations. You can interview
friends, but you cannot interview a friendship, so:
– measure and aggregate attributes of individuals.
– model social life as correlations among individual attributes (e.g. age, race,

gender, education, income)

π Challenges for current tools and techniques:
– Accounting for missing or erroneous data
– Modeling dynamic changes in network structure (diachronic change)
– Modeling key flows, identify key players
– Detecting vulnerabilities
– Performing what-if analyses
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Agent-Based Simulation
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Simulation in the Social Sciences

Simulation is a third way of doing
science, in contrast to both
induction (statistics) and deduction
(mathematics).

  Like deduction, it starts with a set of
explicit assumptions.

  But unlike deduction, it does not prove
theorems

Instead, a simulation generates data that
can be analyzed inductively.

Unlike typical induction, the simulated data
comes from a rigorously specified set of
rules rather than direct measurement of
the real world.

While induction can be used to find
patterns in data, and deduction can be
used to find consequences of
assumptions, simulation modeling can be
used to aid intuition.

Robert Axelrod, 1997
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Why Simulation?

π Want to solve problems through
strategy of “divide and conquer”

π Need to make ceteris paribus
assumption

π But in complex systems this
assumption breaks down

π Herbert Simon: Complex
systems are composed of large
numbers of parts that interact in
a non-linear fashion

π Therefore, we need to study
interactions explicitly

• Causal Theory: efficient
history
• Cannot capture social forms
in variables and equations
• Explain complex systems by
deriving the mechanisms that
generate them
• Feedback undermines this
perspective
• Need to endogenize the
actors and interactions
• Object-oriented design is a
good way to agents

A social form is a configuration of social
interactions and actors together with the
structures in which they are embedded
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 What is Agent-Based Simulation?

π An agent is:
– An individual with a set of characteristics or attributes
– A set of rules governing agent behaviors or “decision-making”

capability, protocols for communication
• Respond to the environment
• Interact with other agents in the system

π Agent-based modeling is a computational methodology that allows
scientists to create, analyze, and experiment with artificial worlds populated
by agents that interact in nontrivial ways and that constitute their own
environment.

π An agent-based simulation (ABS) is one in which a collection of agents
compete or collaborate or both to attain individual goals in pursuit of a social
or organizational goal(s).

π A simulation based on software agents can support good science provided
the design of the agents and the simulation environment are themselves
based on good science.
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Why ABS?

π Aspects of the real world that we want to examine are not physically
accessible
– ABS takes place in an artificial world

π Experimenting with the real system is prohibited due to undesirable
disturbances

π Time scale of system behavior is too small or too large for observation
π The original system does not exist any more or does not exist yet
π Modeling is a tool for understanding  formalization of a hypothesis

that otherwise would have remained very vague
π Begins with object/agent behavior rules governing interactions; aggregate

observables “emerge”

π Natural modularity follows the types of objects (real world analog)
π Can distinguish between physical space & interaction topology
π Handles large heterogeneity of objects
π Behavioral validation at both object and aggregate levels
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ABS: Key Assumptions

π Agents interact with little or no central authority or direction:
– Global patterns emerge from the bottom-up
– "Self-organization" process (Kaufmann 1996)

π Agents are interdependent:
– Agents influence others in response to influence they receive.

π Agents follow simple rules:
– Global complexity does not necessarily reflect the cognitive complexity of individuals
– Simon contended that human beings are quite simple.
– “the apparent complexity of our behavior is largely a reflection of the complexity of the

environment.” (Simon 1998)

π Agents are adaptive and backward-looking.
– When interdependent agents are also adaptive, their interaction can generate a “complex

adaptive system” (Holland 1995)
– Agents adapt at two levels: individual and population (or group)
– Individual learning alters the probability distribution of rules competing for attention.
– Population learning alters the frequency distribution of agents competing for reproduction

through processes of selection, imitation, and social influence.
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ABS Implementation

π The observed behavior is typically best described qualitatively and
the reasons individuals give for their behavior is almost invariably
qualitative as well.

π Validation of software agents as good representations of real
individuals can be facilitated by:
– having the agents perceive events specified by qualitative descriptions
– maintaining the qualitative terms in processing those perceptions
– acting in ways that can be described qualitatively

π A natural way to maintain this qualitative link between the language
of actors and the language of the agents is to use production
systems whereby:
– the rule conditions describe the perceptions by the agents
– processing is governed by some inference engine
– the actions are specified by the consequents of the rules

π There are many logics that can facilitate this representation, but few
are known to social scientists.
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π Sugarscape (Epstein &
Axtell)
– Goal: Explain social and

economic behaviors at large
scale based on individual
behaviors.

π Agent rules:
– Life, Death, Disease
– Trade: Sugar, Spice
– Wealth
– Sex, Reproduction
– Culture
– Conflict, War
– Externalities: Pollution

π A Classic Example (ca.1990s)

Applying CAs to Social Sciences
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Agent-Based Model Development

  Ref: Kilicay, N. “Emergent Phenomena and Human Social Systems”, web.umr.edu/~sesl/Presentations%5Ckilicay-sesl.ppt 
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Designing Agent-Based Simulations

π Conceptualization:
– Formalize the first description of the problem
– UML use cases provide an easy way to document the major problem

space elements

π Analysis: Develop a detailed requirements specification by
delimitation to distinguish the agent-based system from the external
non-agent system

π Decomposition: Partition the system based on the geographical,
logical and knowledge distribution

π Validation: Determine correctness with respect to previous
definitions and other models.
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Designing Agent-Based Simulations

π Design: Conduct application design; decompose fucntionality into
submodules
– architecture design through selection of a multi-agent architecture and

determining the infrastructure based on the applied network, used
knowledge and the coordination

– platform design, addressing the needed software and hardware - the
basis for this phase is mainly the expertise model and the task model.

π Coding and testing: performed on an individual agent basis.
π Integration: Integrating the different individual agents, any support

mechanisms, and testing of the multiagent system.
π Operation and maintenance: apply to real problems
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Types of Models To Construct

π Organization Model: environments for agents
– Perform actions that are aggregate within the simulation
– Specifies context: must ground in the 'real world" to

be acceptable to users

π Agent Model: descriptions of individual actors and their
abilities
– Attribute- and Operation-based
– Operations are functions the agent can perform

π Task Model: descriptions of actions to be performed by agents
or organizations
– Develop a task hierarchy; maybe a many-rooted tree
– Topmost elements are objectives of the simulation
– What is important is how the agents achieve the

objectives rather than the objectives themselves
(since they are already specified)

– Allow for a certain amount of serendipity
“Boids”



HICSS-41 CMSOS Copyright 2007 Steve Kaisler/Greg Madey CMSOS-100

Types of Models To Construct

π Communication Model: describes the interactions between
agents, organizations and the external world
– Specifies the protocols of information exchange: types of messages,

content, conditions, etc.
– The basic system interaction is embedded in the communication model
– Think of the protocol as a set of transactions:

• A gives B
• Then (sometimes)  B gives A
• B may not respond directly to A's last transaction,

but changes the subject

– How do people communicate in the real world?
– Agents communicate with organizations as well

π Question: How would you model a standing ovation?

Norbert Wiener, Cybernetics
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Model Relationships

• Behavior-oriented Agent
Models

- Modeling = Describing
agent behavior

• Goal-oriented Agent Models

- Modeling = Identifying
goals and let the agents
plan…
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Problem: East Coast Evacuation

π Assume an asteroid is
going to strike
somewhere off the East
Coast in 1 week
– Will generate a wall of

water over 30 feet high
– Inundate the coastline

into Richmond, Va (for
example)

π How do we determine
how best to evacuate
the East Coast

π How would you use
ABS to model the
behavior of (groups of)
people?
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STRADS

π Strategic Automated Discovery System (Oresky, Lenat, Clarkson, and Kaisler
1991)

– Based on work pioneered by Lenat in AM and Eurisko
– A knowledge-based simulation system for generating and analyzing alternative scenarios in

geopolitical military situations

π Basic Idea:
– Given an event, STRADS simulates the responses of various actors (countries, leaders,

NGOs, etc.) in the context specified by the particular scenario.
– These responses, in turn, generate new events, which cause the process to repeat.
– STRADS continues until no new events have been created.

π STRADS aided analysts by generating plausible scenarios
– Analysts often knew likely outcomes, but did not know what sequence(s)

of events would lead to a specific outcome
– Sometimes, unlikely outcomes, even surprising ones, could arise from the

proper mix of factors
– By varying the initial assumptions (boundary conditions), an analyst can

(possibly) generate many different scenarios and, thus, explore the problem space
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Why STRADS?

π Human Limitations:
– “Mirror-Imaging”: Analysts reflect own perspectives when analyzing

other countries actions

When making deals with Iran, it was a mistaken belief that it would make them
feel indebted to us, rather than viewing it from their perspective of Koran-
sanctioned cheating and stealing and lying to infidels

– Assuming “Past is Prologue” in dissimilar situations

Treating the Mayaguez incident as similar to the Pueblo, just because both ships
had Spanish-sounding names and were hijacked.

– Mindset: Perceiving what you expect rather than what actually is
happening

During overthrow of the Shah of Iran by Shi’ite fundamentalists, it was
unexpected that a grass roots religious upheaval would succeed in a country with
a powerful secret police and disciplined, well-armed military. But, the Shah was
unwilling to use force to defend his position.
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Motivation

π Al Clarkson, Towards Effective Strategic Analysis, Westview Press,
Colorado Springs, CO 1981
– Strategic analysis is a rigorous cognitive process by which possible crucial

realities of the future are first imagined and then modeled systematically to
delineate their conditions, dynamics, and possible outcomes, every effort being
made to achieve realism and verisimilitude; with various inferential strategies
procedurally employed to develop comparative probabilities; with the models and
probabilities continuously reviewed and modified appropriately on the basis of
new data; with post mortems conducted systematically to measure performance
and to stimulate learning; and the entire process oriented towards decision
making and policy formulation.

π Goal: Overcome Mindset
– The tendency to perceive what you expect to happen rather than what actually

happened
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STRADS Implementation

π Symbolically represented extensive knowledge about the world
– Political, cultural, economic, military, etc…

π Represented actual and/or imagined problems through scripts
and events
– Scrips associated with event types, actors, and activities

π Produced numerous scenarios to explore strategic possibilities
using a heuristics-guided program

π Conduct experiments based on user-defined parameters to
examine possible outcomes
– Actors behavior determined by scripts, observance of events, and

perceptions of other actor’s behaviors
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STRADS Overview

• Actor-based Simulation
• Actors dynamically
make decisions based
on perceived events
and belief models
• Rule-based decision-
making

• Discrete Simulation
• Belief System Modeling
• "What-If" Subsimulation
Capability
• Scenario-Driven
• Self Modification Based on
Learning from Interactions
with other Actors (Future)
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STRAD Script-Event-Actor Model

• An Actor perceives events
occurring in the simulation
• Based on values of Actor
slots, an appropriate Script is
selected for the Actor to
execute by the Rules
• The Script determines the
number of and type of
responses the Actor may
give
• Responses cause new
Events to be added to the
simulation agenda
• Random natural events can
be inserted into the event
queue (typhoons, death of a
leader, famine, etc…)
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STRADS: Partial Actor Definition

Each is an independent actor

Member of groups organized
by affinity or attributes

Several hundred slots describe actors

Values of slots are complex structures to support the belief system:
• ActualValue – the present value
• CurrentValue – what the actor believes the value to be
• GoalValue – what the actor wants the value to be
• ImportanceOfGoalValue – how important it is to the actor that the goal value be achieved
• OtherActorsGoals – what other actors want the value to be and how important it is to the to
achieve that value
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STRADS Events

An event corresponds to an action that occurred in the world at a particular time and place. 

A STRADS event describes who was involved; what action was performed; how the action was performed; 
when, where, and why it took place; and who knows and believes the event took place.
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STRADS Event Example - I
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STRADS Event Example - II

Same rules!

Different Script

Different Events



HICSS-41 CMSOS Copyright 2007 Steve Kaisler/Greg Madey CMSOS-113

Script Hierarchy

A script represents a set of options about how an actor might act in a particular situation.
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Script Example (Lisp)

(defscript 'VictimGovtResponseToAttackByUsingLegalSystem
  'CreationDate "15-Jul-86 17:03:10"
  'English '(Government believes that support of military retaliations is
             lacking and therefore a strike would do more harm than good.
             Government will try using its legal system instead.)
  'QuickSelect 'VictimGovtUseLegalSystemFn
  'ScriptEvents '((InSequence IdentifyResponsibleGroupInAnEvent)
                  (InCombination AnnouncementAssigningResponsibilityForAnEvent
                                 AnnouncementDenouncingPastActionsOfOthers)
                  (InParallel MessageRequestingExtraditionOfInstigatorParty
                              AnnouncementRequestingExtraditionOfInstigatorParty))
  'ScriptBindings '((setq actor1 instigators))
  'Isa '(VictimGovtResponseToViolentInternationalAttacks)
  'Parts '(IdentifyResponsibleGroupInAnEvent
           MessageRequestingExtraditionOfInstigatorParty
           AnnouncementRequestingExtraditionOfInstigatorParty
           AnnouncementDenouncingPastActionsOfOthers
           AnnouncementAssigningResponsibilityForAnEvent))
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Scenario Example
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Why “ABS” Will Help Advance Social Science
Knowledge

π Most interesting sociopolitical
systems are only partially
understood (e.g., we know
something about agent
attributes and behaviors); and

π Known empirical social
patterns can be used for
assessing fitness of an
evolved model.

π [1] and [2] may provide
sufficient conditions for
discovering more complete
and insightful knowledge on
complex social systems.

© Claudio Cioffi-Revilla. SimPol, 2004.
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ABS: Validation & Verification

π Validation is one of the most critical challenges
• What constitutes a validated model? Validated theory?
• Is there social science theory in the model?
• Has the theory been validated in the way it is used?
• Are theories (multi-scale) used together appropriately? Conflicting?

Gaps?
• Do the theory implementations allow for empirical model validation?

• Validation Resources
• Scientific validation philosophy, literature
• Social science theory validation
• Traditional model validation (for decision support)
• Agent-based model validation: examples, literature
• Human/social behavior representation and validation
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ABS: Validation & Verification

Ref: Turnley, J.G. 2005. Validation Issues in Computational Social Simulation, Galisteo Consulting Group, Inc.
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A Methodology for ABS

π Combines:
– Social Network Analysis
– Systems Dynamics

π Use Social network Analysis to identify the actors in the
problem space
– Model the static relationships of the actors (people, groups,

organizations)
– Identify and associate attributes and factors
– Understand the environmental actors, e.g., those not simulated

π Use System Dynamics to model the dynamic interactions
among actors based on attributes
– Formal (trade, diplomacy, tourism, etc…)
– Informal (trust, advice, respect, information, etc …)
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“Outside In” Modeling

By far the most common way to deal with something new is by trying to relate the novelty
to what is familiar…:  we think in terms of analogies and metaphors.

The only feasible way of coming to grips with really radical novelty is orthogonal to
the common way of understanding:  it consists in consciously trying not to relate
the phenomenon to what is familiar from one’s accidental past, but approach it
with a blank mind and to appreciate it for its internal structureto appreciate it for its internal structure..

The latter way of understanding is far less popular that the former one, as it requires hard
thinking.  (And as Bertrand Russell has pointed out,  “Many people would sooner die
than think—in fact they do.”)  It is beyond the abilities of those—and they form the
majority—for whom continuous evolution is the only paradigm of history:
unable to cope with discontinuity, they cannot see it and will deny it when
faced with it.”

Edsger W. Dijkstra, Mathematicians & Computing Scientists:  The Cultural Gap, ABACUS, vol. 4 no. 4, Summer 1987.
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ABS: Challenges

π How can we use agent-based simulations to fulfill the role
played by telescopes, for example, in the natural sciences?
– Computational Social Science must be recognized as a valid

experimental method, just as it is in the natural sciences.
– But, agent design must not be constrained by unvalidated theory, e.g.,

we must be able to explore unlikely theories about situations when
existing theories don't seem to fit

• What Kinds of Models Can Existing Social Science Theory
Reasonably be Expected to Support?
• What ‘social reality’ is the model representing?

• What is the basis for agent rationality:
• Search (utility, determinism, closed)
• Choice (values, non-determinism, open)



HICSS-41 CMSOS Copyright 2007 Steve Kaisler/Greg Madey CMSOS-122

ABS: Challenges

π How do we represent collective behavior of (multiple) goal-
seeking groups?
– ABS has largely focused on individual agent behaviors, whether they

represent people or groups of people
– Formation of higher-order social structures as a beginning, not an end

of experiments!

π Self-Adaptation and Self-Learning of Agents
– Which precedes?
– Need for long-term, continuous modeling environments and models

π Real-Time, Real-World Focused Simulations
– Driving data derived from real-world events rather than hypothesized

data

π Scaling
– How to evolve from a few hundreds to a few 10,000s of agents
– Is this realistic?
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Agent-Based Simulation Toolkits

π Repast: http://repast.sourceforge.net/
π SWARM: http://www.swarm.org/wiki/Main_Page
π NetLogo: http://ccl.northwestern.edu/netlogo/
π MASON: http://cs.gmu.edu/~eclab/projects/mason/
π Madkit: http://www.madkit.org/
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ABS: References
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A Final Word!

Alfred North Whitehead

We have a tendency to mistake our models for
reality, especially when they are good models.
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Thank You
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Additional Information
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Q/CSS Organizations – A Sampler

π George Mason University:
– Center for Social Complexity, Krasnow Institute
– Professor Claudio Cioffi-Revilla, Director
– http://socialcomplexity.gmu.edu/

π Carnegie Mellon University
– Computational Analysis of Social and Organizational Systems
– Professor Kathleen Carley, Director
– http://www.casos.cs.cmu.edu

π Brookings Institution
– Center on Social and Economic Dynamics
– Dr. Joshua Epstein, Director
– http://www.brook.edu/es/dynamics

π The Santa Fe Institute
– http://www.santafe.edu/
– Dr. Geoffrey West, President

π University of Michigan
– Center for the Study of Complex Systems
– Professor Carl P. Simon, Director
– http://www.cscs.umich.edu/
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Top Textbooks and Journals in
Computational Social Science

π Nigel Gilbert & Klaus Troitzsch. 2005. Simulation for the Social
Scientist. Second edition ed. Buckingham and Philadelphia: Open
University Press.

π Charles S. Taber & Richard J. Timpone. 1996. Computational
Modeling. Thousand Oaks, London and New Dehli: Sage Publications.

π JASSS Journal of Artificial Societies and Social Simulation (online)
π SSCR Social Science Computer Review (Sage)
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Social Network Analysis

Additional Material
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Graph Theory Primer - I

π Social network data consists of binary social relations, of which there
are many kinds (role-based, affective, cognitive, flows, etc.)
– Mathematically, social networks can be represented as graphs or matrices.

π A graph is defined as a set of nodes and a set of lines that connect the
nodes, written mathematically as G=(V,E) or G(V,E).

π The nodes in a graph represent persons (or animals, organizations,
cities, countries, etc) and the edges (lines) represent relationships
among them.
– The line between persons a and b is represented mathematically like this: (a,b).
– The graph here contains these edges: (a,b), (a,e), (b,d), (a,c), and (d,c).
– A subgraph of a graph is a subset of its points

together with all the lines connecting members
of the subset. (subgraph = {a, b,c,d})

π The degree of a point is defined as the
number of lines incident upon that node.
degree(a) = 3
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Graph Theory Primer - II

π If a node has degree 0 it is called
an isolate.

π In a directed graph, the edges
have direction (indicated by
arrow heads)

π If a line connects two points,
they are said to be "adjacent".

π The two points connected by a
line are called endpoints.
– An edge that originates or

terminates at a given point is
"incident" upon that point.

– Two edges that share a point are
also said to be incident.

π A weighted graph has values
assigned to the edges.
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Graph Theory Primer - III

π In a directed graph, a point has both indegree and outdegree:
– The outdegree is the number of arcs from that point to other points.
– The indegree is the number of arcs coming in to the point from other points.

π A path is an alternating sequence of points and lines, beginning at a
point and ending at a point, and which does not visit any point more
than once.
– Two paths are point-disjoint if they don't share any nodes.
– Two paths are edge-disjoint if they don't share any edges.
– A walk is a path with no restriction on the number of times a point can be visited.
– A cycle is a path except that it starts and ends at the same point.
– The length of a path is defined as the number of edges in it.
– The shortest path between two points is called a geodesic.
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SNA: Centrality

π Centrality:
– A stratification measure
– How to measure "power"

π Does success depend on local or distal connections?
π Does success depend on the power/centrality of other

actors/vertices to which a focal vertex is connected?
π Do resources “flow through” intermediary nodes, so that

indirect relationships become proxies for direct ones?
π Or is centrality more in the way of an indicator of exchange

opportunities/bargaining power?
π What are the “rules of the game” as regards the activation of

multiple relationships?
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SNA: Centrality

π Degree Centrality: number of distinct relationships or links a
node has
– CD(i) = Σ xij;j =1,N and i /= j
– CD(i) = CD(i)/(N-1) normalized value
– Differentiate by "in" and "out" connections based on which way power &

influence flow

π Betweenness Centrality: measures control or broker ability of a
node
– Assume this "process" is efficient because it occurs along geodesic

paths
– Maximum "betweenness" is for an intermediary node in a star network

π Closeness: who can reach others via few intermediaries are
relatively independent/autonomous of others
- Intermediaries serve as attenuators and filters
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SNA: Centrality

π "Eigenvector" centrality:
– There exist multiple central nodes in the network
– The centrality of a vertex depends on having strong ties to other central

vertices
– "Status" rises through strong affiliations with high-status others
– Compute: ei = f(Σ rijej; j = 1, N) where ei is the eigenvector centrality

measure and rij is the strength of the relationship between i and j
(sometimes thought of as j’s dependence on i)

π What else can we measure?
– Lots of different measures
– Weighted, directional graphs to measure "flow of influence"
– Borgatti/Everett partition networks into "core" and "periphery" graphs

connected by key nodes
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SNA Websites

π International Network for Social Network Analysis
http://www.insna.org/

π Valdis Krebs, http://www.orgnet.com/
π Analytic technologies, http://www.analytictech.com/
π Networks/Pajek, http://vlado.fmf.uni-

lj.si/pub/networks/pajek/default.htm
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Agent-Based Simulation

Additional Material
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The MASON toolkit

π MASON (Multi-Agent Simulator of Networks and Neighborhoods) is a
– general-purpose,
– single-process,
– discrete-event simulation library for building diverse multiagent models across
– the social and computational sciences (AI, robotics),
– ranging from 3D continuous models,
– to social complexity networks,
– to discretized foraging algorithms based on evolutionary computation (EC)

π Design principles:
– intersection (not union) of needs
– “additive” approach
– divorced visualization
– Checkpointing
– EC
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MASON Application Models

π HeatBugs (MT)
– Classic, 3D, HexaBugs

π Conway’s Life
π Schelling’s segregation
π Agent foraging

– Static & moving food

π Virals
– Anthrax, cybersecurity

π Wetlands
– Agent 05, CollInt IV
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MASON “Wetlands” Model

π STATICS (“ontology”):
– Artificial world classes

• Group-level social agents
• Physical environment

– Physical environment layers
• Landscape of hex cells

– Food distribution (green)
– Shelter sites (brown)

• Weather (rain)
• Real world: simple ecotope

– Heterogeneous social agents
• Groups, not individuals
• Two cultures: Atis (red) and Etis

(black) each with same social
memory structure.
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MASON “Wetlands”

π DYNAMICS:
1. Rain (blue) occurs constantly, causing food (green) to grow.
2. Agents move seeking food, which consumes energy and

makes them wet.
3. IF an agent gets too wet it will seek shelter (brown sites) until

dry enough to go out to eat again again.
4. Agents share information (or “mind-read”?) on food and

shelter location only with agents of same culture that they
encounter nearby.

5. There is no rule to behave collectively.
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Observed Wetlands regimes

0

32

1
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Examples of MASON models (open-
source)

InterHex.MASON
Model of an
international
system with
incomplete
knowledge and
(eventually) EC
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Modeling tools are only as good as what they can actually model
(Kline’s thesis): What ABMs Simulators (Swarm, Ascape, RePast,

MASON et al.) can model:

π Climate
π 2D and 3D environments and

neighborhoods
π Decision-making
π Memory
π Deception
π Leadership
π Strategic choice
π Trade
π Accumulation of wealth
π Networks
π Flocking

π Migration
π Foraging
π Agriculture
π Land-use patterns
π Warfare
π International war
π Peacekeeping
π Civil violence
π Colonization
π Urbanization
π Alliance dynamics
π Collective action


