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Abstract

Background: Ultraconserved elements are nucleotide or protein sequences with 100% identity (no mismatches,

insertions, or deletions) in the same organism or between two or more organisms. Studies indicate that these

conserved regions are associated with micro RNAs, mRNA processing, development and transcription regulation.

The identification and characterization of these elements among genomes is necessary for the further

understanding of their functionality.

Results: We describe an algorithm and provide freely available software which can find all of the ultraconserved

sequences between genomes of multiple organisms. Our algorithm takes a combinatorial approach that finds all

sequences without requiring the genomes to be aligned. The algorithm is significantly faster than BLAST and is

designed to handle very large genomes efficiently. We ran our algorithm on several large comparative analyses to

evaluate its effectiveness; one compared 17 vertebrate genomes where we find 123 ultraconserved elements

longer than 40 bps shared by all of the organisms, and another compared the human body louse, Pediculus

humanus humanus, against itself and select insects to find thousands of non-coding, potentially functional

sequences.

Conclusions: Whole genome comparative analysis for multiple organisms is both feasible and desirable in our

search for biological knowledge. We argue that bioinformatic programs should be forward thinking by assuming

analysis on multiple (and possibly large) genomes in the design and implementation of algorithms. Our
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algorithm shows how a compromise design with a trade-off of disk space versus memory space allows for efficient

computation while only requiring modest computer resources, and at the same time providing benefits not

available with other software.

Background

The availability of whole genome assemblies [1–3] and the development of bioinformatics tools and

interfaces [4, 5] for their analysis, enable data-mining and comparison of these large genomic datasets.

Ultraconserved elements are nucleotide or protein sequences with 100% identity (no mismatches, insertions,

or deletions) in the same organism or between two or more organisms. A recent comparison of several

vertebrate genomes demonstrates that, in addition to coding, non-coding sequences can be highly

conserved between species [6]. Approximately 5% of the human genome is under negative selection,

indicating conservation of sequence due to functional necessity. These functional regions are conserved

since random mutations that would negatively effect functionality would be rejected by natural selection.

Consequently, orthologous functional regions would be more similar between different genomes. Genome

comparison has become a vital tool in the identification of these conserved functional elements. Of the 5%

of the human genome that is under selection, only 1.2% codes for protein sequences [6]. Surprisingly, the

most conserved regions amongst vertebrates are in non-coding sequences. These ultraconserved elements

are significantly more conserved (up to 100%) than would be expected across genomes. Though these

ultraconserved elements seem to be specific to vertebrates, they are present in other metazoan genomes as

well [7–9]. Studies indicate that these conserved regions are associated with micro RNAs, mRNA

processing, development and transcription regulation [7–13]. The identification and characterization of

these elements among genomes is necessary for the further understanding of their functionality. Multiple

organism whole genome comparative analyses such as these would elucidate the function of these conserved

elements and their importance in various evolutionary lineages.

In this paper, we describe an algorithm, a set of freely available software programs, and a workflow for

finding ultraconserved elements for multiple organisms. We explicitly design our algorithm to take both

computational time and memory space in to account such that it can handle genomes of any size as well as
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take advantage of parallel computation on typical computer clusters. Our algorithm and workflow provides

a case study showing that by focusing on a specialized task, computation can be orders of magnitude more

efficient; this allows previously impractical, but highly desirable, whole genome comparative analysis to be

performed.

Results and Discussion

Algorithms that perform multiple organism comparative genomics must explicitly deal with the issue of

large genomes. Most vertebrate genomes, such as human, mouse, chicken, etc., approach the maximum size

of addressable memory space for 32-bit processors (4 GB). 64-bit processors which have sufficiently large

addressable memory space (millions of GB) generally do not have more than 16-32 GB of actual physical

memory due to technology limitations or because the cost is prohibitive. This physical memory bound will

increase in the future as memory capacities increase, but for the near future, the generation of genomic

data is increasing at an even faster rate. Even if all the genomic data can be brought into memory, there

still needs to be space for data structures that organize the data for algorithmic purposes; these data

structures are often multiple times larger than the raw genome data.

Algorithm

Our algorithm for finding the longest ultraconserved sequences for multiple organisms breaks up the task

into smaller, manageable subtasks which in most cases can all be run in parallel on a computer cluster.

The first step is to prepare the genome data into appropriate size data files. If the genome has already

been mapped to chromosomes then the individual chromosome sequences provide a natural division;

otherwise, the genome is probably provided as one large FASTA file containing all of the assembled

scaffolds. The next step is to generate a suffix array data structure for each data file. The main algorithm

then takes two suffix arrays and produces a list of maximal common prefixes (MCP) which correspond to

ultraconserved sequences; this is done in a pair-wise fashion for all suffix arrays of the two organisms. The

union of the MCP files produces the final MCP file for the two organisms. The workflow is summarized in

Figure 1. For multiple organisms, each final MCP file for a pair of organisms is intersected within another

final MCP file for a different pair of organisms; this is repeated in tournament-style fashion producing an

MCP file for all the organisms. Lastly the MCP file can be trimmed to remove overlaps and retain just the

longest sequences. Figure 2 shows the tournament-style intersection for multiple organisms. We describe

each step in detail in the following sections.
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Prepare Genome Data

The genome data for each organism can be split into appropriate size sequence files to facilitate parallel

execution of many of the programs in the workflow. If the genome has already been mapped to

chromosomes then the individual chromosome sequences provide a natural division. Otherwise, the genome

is probably provided as one large FASTA file containing all of the assembled scaffolds; in which case, that

single file may be split into several smaller files. We provide a simple utility, split fasta, which will split

up a FASTA file containing numerous sequences into several files. The largest memory requirement is

incurred when the genome data is processed into suffix array data structures. The following calculation can

be used to determine how much memory will be required for each strand:

Memory(bytes) = Sequence size + (2 ∗ Sequence size ∗ sizeof(int))

where Sequence size is the number of nucleotide base pairs in the sequence. The size of the integer data

type, (sizeof(int)), on most platforms is 4 bytes. The first term is the size of the sequence, and the second

term is the size of the suffix array which is doubled for temporary storage required by the sorting process.

For example, human chromosome 1 is ∼ 250 MB which gives the memory requirement:

Memory = 250Mbp + (2 ∗ 250Mbp ∗ 4) = 2.25GB

When constructing the suffix array from the sequences (described in the next section), any size sequence

file can be accommodated regardless of the available physical memory up to the virtual memory limit of

the machine. However if the memory usage as required by the above equation exceeds physical memory

then construction of the suffix array will take longer, so to maximize efficiency the size of the sequence files

can be reduced so that the processing of each individual file fits completely into the physical memory of the

machine. This memory usage is only for the initial creation of the suffix array; afterwards the suffix array

is stored on disk and memory requirements are minimal for the additional processing steps of the workflow.

There is no limit to the number of individual files that can be processed with the algorithm, so it is better

to have many smaller files than just a few large files.

Generate Suffix Array Data Structures from Genome Data

We process each sequence file into a specialized data structure called a suffix array. A suffix array [14]

looks at the sequence as one long string, takes all possible suffix strings, and sorts those suffix strings in

lexicographical order. A suffix is a trailing end substring, so a string of length N has N unique suffix strings
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of length N, N-1, N-2, etc. We use an implementation for computing a suffix array by Sean Quinlan and

Sean Dorward [15] that can sort all of the suffix strings in-place using offsets into the full string thus

making for efficient sorting, though the whole suffix array does need to fit into memory. If the sequences

and resulting suffix array are too large for the available physical memory, then multiple suffix arrays are

created on partitions of the sequence data, and those multiple arrays are merged together to form a single

result file. The resultant suffix array is a list of offsets into the original sequence string. Figure 3 shows an

example string with its corresponding suffix array. We use a suffix array instead of a suffix tree because it

is more amenable for storage and access in a file; thus we do not require the whole data structure to be

present in memory.

We provide two programs for constructing the suffix array for a sequence, construct sarray and

construct prot sarray. The first program takes a nucleotide sequence, concatenates the sequence for the

reverse strand, computes the suffix array, and then writes the suffix array along with some reference data

to files. The other program takes a nucleotide sequence, translates codons according to a user-specified

genetic code translation table into amino acids for the three reading frames on the forward strand and the

three reading frames on the reverse strand, computes the suffix array, and then writes the suffix array

along with some reference data to files. Both programs take into account repeat masked sections of the

sequence, whether masked with N’s or lower case nucleotide letters, by removing suffix strings that start

with repeat masked nucleotides or by not translating those sections.

Each individual sequence file is processed into its own suffix array, so the human genome with 22

chromosomes plus the X and Y chromosomes would be processed into 24 separate suffix array files. If the

human genome was also translated then there would be another 24 suffix array files for the translated

nucleotide sequences. The primary tradeoff is between the use of disk space in exchange for lower memory

requirements, but with appropriate data structures the file-based computation is very efficient. There is no

dependence between suffix arrays for different sequence files, so all of the suffix arrays can be computed in

parallel on a typical computer cluster.

Compute Maximal Common Prefixes between Two Organisms

The maximal common prefix (MCP) for two lists of strings is the problem of finding a string in one list that

has a common prefix with a string in the other list, and that common prefix is the maximum length for all

possible choices of strings. A naive implementation would require each string in one list to be compared to
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all strings in the other list resulting in quadratic O(n2) running time. However with our strings in sorted

order in a suffix array, we can compute the maximal common prefixes with just a linear scan through both

suffix arrays. Such an algorithm can find not only the single MCP but all MCP’s for all strings.

We provide the program, mcp sarray, which given two suffix array files will output all maximal common

prefixes greater than or equal to a user-specified length. These maximal common prefixes correspond to

ultraconserved sequences as each MCP is an equivalent sequence that appears in both organisms. The

program works for both nucleotide and protein sequences. In the first step, the organism’s genome was

separated into appropriate size sequence files, so we have multiple suffix array files for the organism.

Finding all of the MCP’s requires running the program in a pairwise fashion with all suffix array files for

both organisms. For example, the human genome has 24 suffix array files and the mouse genome has 21

suffix array files, so pairwise application will generate 504 resultant MCP files. The program, union mcp,

will combine together these individual files into a single resultant MCP file. One may consider combining

all of the suffix array files for an organism into a single suffix array so that the mcp sarray is just run

once; however there are considerably fewer MCP’s making the MCP files much smaller than their

corresponding suffix array files, so it is more efficient to combine results afterwards rather than before.

Furthermore, there are no dependencies between the pairwise mcp sarray programs, so they can be

executed in parallel on a computer cluster which is faster than just two large suffix array files. The

pairwise MCP files can be considered temporary files and deleted once they are combined together into a

single file. However, care should be taken when running many programs in parallel as disk I/O can quickly

become a bottleneck if the suffix array files are stored on shared disk space. Efficiency can be increased by

copying the suffix array files to local disk on each compute node, and the mcp sarray program attempts

to bring in sequence data into memory as a tradeoff between memory and disk I/O.

Compute Maximal Common Prefixes for Multiple Organisms

Computing the MCP’s for multiple organisms involves taking the MCP file for two organisms and

intersecting it with the MCP file for two other organisms, thus producing the maximal prefixes common to

all four organisms. This can be repeated in a tournament-style fashion for any number of organisms.

Similar to the algorithm for computing the MCP’s between two organisms, the intersection algorithm for

multiple organisms can be performed with just a linear scan through both MCP files. We provide the

program, intersect mcp, which given two MCP files will output all maximal common prefixes that are
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present in both input files.

The format of the MCP file is similar to a suffix array but requires additional data to support any number

of organisms. This additional data includes references to a particular sequence for each organism, an offset

into each of those sequences, and a length corresponding to the current maximal common prefix. The

sequences in the MCP file are maintained in sorted order. Intersection of two MCP files proceeds with a

linear scan through both files, determining the maximal common prefix for each entry along with a new

possibly shorter length, then combining all of the organism sequence data together into the output MCP

file. Because an MCP is common to all of the sequences, only one sequence file needs to accessed for each

MCP file; however all of the additional data for the multiple organisms is carried forward for easy reporting

of final results.

Trim Maximal Common Prefixes to Produce Final Report

If our focus was purely on comparing two organisms then the algorithm to compute MCP’s can retain just

the longest sequence found. However with multiple organisms, when intersecting two MCP files, resultant

MCP’s may be shorter or substrings of the those in each individual file. Therefore, not only is the longest

MCP stored in the file but also all of its suffix sequences down to the minimum length. If the intersection

of two MCP files produces a match that is shorter, the suffix sequences maintained in sorted order allows

the intersection process to be performed efficiently. At the end of the workflow, when all of the organisms

have been intersected together, the shorter suffix sequences are no longer required. We provide the

program, trim mcp, which given an MCP file will produce an output MCP file with all shorter suffix

sequences removed, leaving only the longest MCP’s corresponding to the longest ultraconserved sequences

shared by all the organisms; it also sorts the MCP’s by length so that the longest sequences are displayed

first. The program, print mcp, will print out all of the MCP’s in a given file in either a compact summary

form, in FASTA format conducive for input into other programs, or in comma-delimited format for easy

input into a spreadsheet program.

Testing

We ran our algorithm and workflow on a number of example biological case studies to characterize the

scalability and efficiency at which multiple organism whole genome comparative analysis can be performed.

We describe some of the current algorithmic techniques and tools available, and compare our algorithm
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against three tools: BLAST, MUMmer, and Vmatch. Our algorithm outperforms or is similar to them in

computation time and memory usage while providing additional benefits for multiple organism analyses

not provided by any of the tools.

Ultraconserved sequences for 17 vertebrate genomes

We used our algorithm to reproduce the results of Bejerano et al. [6] by finding the 100% conserved

nucleotide sequences between human, mouse, and rat. Our algorithm successfully found the 481 segments

longer than 200 bp and 5524 segments longer than 100 bp in one day of computation on a modest

computer cluster (8 machines).

Since the report by Bejerano et al., additional vertebrate genomes have been sequenced and assembled;

currently there are 17 vertebrate genomes available (see Table 1). We used our algorithm to find the 100%

conserved nucleotide sequences common to all of the genomes. The programs took about a week to run on

our computer cluster producing 123 sequences longer than 40 bps with the longest being 104 bps mapping

to the 40S ribosomal protein S6 (XR 018435).

Ultraconserved sequences within the human body louse and between three insect species

The human body louse, Pediculus humanus humanus, is an insect with a recently assembled genome of size

slightly larger than 100 Mbp. As part of initial analysis of the genome, we ran our algorithm for the

genome against itself and pairwise against three other insect genomes including Drosophila melanogaster,

Anopheles gambiae, and Apis mellifera. We found 920,000 ultraconserved sequences that occur in multiple

places within the louse genome; 85% of these correspond to repeat and low complexity regions which were

not masked in the genome. We separated out the repeat sequences and separated out those sequences

which overlapped the initial gene build for the genome, leaving 85,722 ultraconserved sequences longer

than 40 bps. The longest sequence is 2646 bps with thousands of sequences that are longer than 300 bps.

Work is continuing to also separate transposable elements from the list to get an accurate identification of

non-coding ultraconserved elements in the body louse genome.

Pairwise comparative analysis with the three other insects produced 3431 total ultraconserved sequences

between 40 and 100 bps in length. After separating sequences that overlapped both with the louse gene

build and the other insect’s genes, we are left with 1193 sequences. The total analysis for comparing the

body louse against itself and against the three insects took just one day of computation time (not counting
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time to write a few BioPerl scripts for separating repeats and gene overlaps). The speed with which our

algorithm performed clearly shows that such comparative analysis can be easily performed as part of the

initial analysis of newly assembled genomes to identify potentially functional non-coding elements.

Comparison to Other Methods

Comparison of genomic data is typically phrased in the terminology of aligning sequences whether this be

local alignment versus global alignment, pairwise alignment for two sequences, or multiple alignment for

multiple sequences. Furthermore, comparison is often in the context of protein coding sequences which

implies that approximate computation techniques are required to find matches in the face of nucleotide

mutations and degeneracy in the genetic code. Comparison techniques vary with tools like BLAST [16],

BLASTZ [17], BLAT [18], and PatternHunter [19] allowing for relatively short query sequences to be

aligned against a sequence database containing one or many large sequences; the focus of these tools are

concerned primarily with performing adequate approximate matching in reasonable computation time.

They tend to ignore multiple organisms and whole genome comparison requires the genome to be chopped

up into small query sequences. Whole genome alignment tools like WABA [20] and LAGAN [21] including

those that support multiple alignments like Multi-LAGAN [21] and MAVID [22] adequately consider

handling large genome data; however because of their approximate matching techniques, they are

computationally expensive for the simpler task of finding ultraconserved sequences. For this reason, tools

like MUMmer [23], REPuter [24] and its successor Vmatch [25] use data structures such as suffix trees and

suffix arrays that allow for efficient computation of exact matches. Regardless not all of these tools

(MUMmer, REPuter) handle sequences in a memory-efficient manner and none provides direct support for

a multiple organism whole genome workflow.

BLAST

With careful selection of parameters, specifically by disabling gaps, setting a large mismatch penalty, and

optionally turning off masking of low complexity regions, BLAST [16] can be used to find 100% matches

between two sequences. We ran some tests to compare the results, efficiency, and ease of use of our

algorithm with BLAST. All tests were run on an idle PowerMac Dual G5 2.7 Ghz with 6 GB memory. We

used 40 as the lower length bound for sequences.

For the first test, we compared chromosome 1 of the Arabadopsis thaliana nuclear genome to its
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chloroplast. A BLAST database of chromosome 1 (∼ 30 Mbp) was made and the chloroplast genome (∼

150 Kbp) was the query sequence. Both BLAST and our algorithm performed the comparison very quickly,

under one minute. Our algorithm returned 30 sequences while BLAST returned 22 sequences; the

discrepancy in the results involved the forward and reverse strand. Generally one expects double the

number of results because an ultraconserved sequence on one strand will also have an ultraconserved

sequence on the complement strand, so the 30 sequences found by algorithm are 15 sequences on one

strand and 15 on the complement. BLAST actually found all 15 sequences in a mix of forward and reverse

strand results, but for some reason only managed to find 7 of the 15 complement sequences. It is possible

that the results for the two strands can be different, when the ultraconserved sequence occurs in multiple

places, as the leading and trailing ends may provide a longer match in one place versus another, so

searching for matches on just one strand is technically not accurate though it is a good approximation.

This situation did not occur with this test.

For the second test, we compared chromosome 1 of the chicken genome (∼ 196 Mbp) with chromosome 1 of

the human genome (∼ 250 Mbp). A BLAST database was made with the human chromosome and the

chicken chromosome was the query sequence. BLAST ran for approximately two hours before crashing

with an out of memory error, no results were reported. Our algorithm ran for 19 minutes and produced

227 sequences.

To resolve the memory issues with BLAST programs, the query sequence can be split into small segments,

Woolfe et al. [10] used 1 Mb segments for comparing Fugu rubripes to human, which are individually

aligned and the results combined. Difficulties with this approach include providing sufficient overlap of

segments so sequences on the border are not missed and the large number of results to be combined.

Regardless this approach is computationally very expensive, we estimate BLAST would require around 13

hours to compare chicken chromosome 1 with human chromosome 1, and numerous result files would need

to be parsed and combined to produce the final results.

Handling multiple organisms with BLAST is not implicitly supported but could be handled in a similar

tournament-style fashion as with our algorithm. The results from running BLAST for two organisms would

be combined together and formated into a BLAST database; the results from two other organisms are then

used as query sequences against that database. This process would be repeated for as many organisms as

desired. This would require an additional program to be written to parse and process the BLAST output;
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an additional step not required by our algorithm.

MUMmer 3.0

MUMmer [23,26,27] is a set of programs for rapidly aligning genomes that is similar to our algorithm in

capability. It constructs a suffix tree data structure [28] for a given reference sequence, then the tree is

traversed for a given query sequence to produce maximally match; these matches correspond to

ultraconserved elements. Suffix trees are similar to suffix arrays but slightly more efficient because they can

be constructed in O(n) time of the sequence length versus O(nlgn) for suffix arrays due to the sorting

process. MUMmer’s disadvantage is that it requires the whole tree to be present in physical memory.

MUMmer 3.0 with its efficient suffix tree implementation requires 15.43 bytes of memory for each base

pair, so the largest human chromosome 2 at 237.6 Mbp requires 3908 MB of memory; the very edge of

addressable memory for 32-bit processors. With the finalized sequencing of the human genome filling in the

gaps, chromosome 1 is now the largest at 252 Mbp and is too large for MUMmer to fit in 4 GB of memory.

Various projects [29–31] have explored the issues of organizing suffix trees on disk.

We performed similar tests with MUMmer as with BLAST, comparing chromosome 1 of Arabadopsis

thaliana to its chloroplast. With the nuclear genome as the reference sequence, MUMmer took 71 seconds

while with the chloroplast genome as the reference sequence, it took only 48 seconds. Our algorithm was

also sensitive to which sequence was used for the reference sequence taking 125 seconds for the nuclear

genome and 43 seconds for the chloroplast genome.

For comparing chromosome 1 of the chicken genome to chromosome 1 of the human genome, we tried each

as the reference sequence to MUMmer but in both cases the program aborted with an out of memory error

(32-bit PowerMac G5 with 6 GB memory) during the construction of the suffix tree. Therefore, we ran our

tests on a 64-bit Sun Dual Opteron 2.1 Ghz with 16 GB memory. Execution speed for MUMmer and our

algorithm were about equal, both taking 10 minutes to compare the two chromosomes irregardless of which

chromosome was used as the reference sequence. From watching the programs using the UNIX top

command, our algorithm used only 500 MB memory (sequence data) while MUMmer used 3.7 GB memory.

As expected, the results show that if sufficient memory is available then the suffix tree data structure is

faster than the suffix array. For large genomes, the difference is less apparent and our algorithm provides

comparable execution time with a much smaller memory footprint. The lower memory requirement allows
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us to run two instances of our algorithm on each cluster machine taking advantage of both available

processors. This can be especially important in the future with newer processors having multiple execution

cores.

Our algorithm requires that the sequence data first be processed into a suffix array file. For Arabadopsis

thaliana this was immediate for the chloroplast genome at under one second and took 4.5 minutes for the

nuclear genome. Chicken chromosome 1 took 12 minutes to build the suffix array and 13 minutes for

human chromosome 1. We point out that the cost for generating the initial suffix array is amortized across

all of the comparisons that use the array, as the generation is only performed once; furthermore, multiple

suffix arrays can be generated in parallel using a computer cluster.

Vmatch

Vmatch [25] is full-featured suite of tools that subsumes REPuter [24] and has improved time and space

complexity through the use of enhanced suffix arrays [32]. Vmatch offers a number of matching and

post-processing options for finding equivalent string matches between sequences including maximal unique

(as with MUMmer), tandem, supermaximal, and complete matches, while post-processing provides inverse

output (substrings not covered by the matches), masking, and clustering. It operates similar to BLAST

and other tools whereby a database (set of index files) is constructed from one sequence set then query

sequences are matched against that database. Vmatch can also perform matching of a sequence against

itself. Like our algorithm, Vmatch uses suffix arrays which have better memory efficiency than suffix trees.

Vmatch was efficient in the construction of its database files requiring just a second for the Arabadopsis

thaliana chloroplast, 1 minute for chromosome 1 of Arabadopsis thaliana, 3 minutes for chicken

chromosome 1 of the chicken genome, and 3 minutes for human chromosome 1. However, we note that

Vmatch only indexes one strand of the sequence and does not appear to allow both strands to be indexed

together in its database files; though the reverse strand can be indexed into its own database. Analysis of

ultraconserved elements requires finding matches against the forward and reverse strand separately, as well

as provide forward and reverse query sequences, then combining the result files together. In our tests, use

of the reverse strand index file produced no results requiring us to construct a reverse complement

sequence first then create a database file with it, so in subsequent analysis, we just performed a single
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computation on the forward strand.

Vmatch took 13 seconds to find the 10 ultraconserved sequences for the forward strands of the Arabadopsis

thaliana chromosome 1 with its chloroplast. Vmatch also showed different running times depending upon

which sequence was used as the query versus the database. For comparing chromosome 1 of the chicken

genome to chromosome 1 of the human genome, Vmatch took slightly over 2 minutes with the human

chromosome as the query sequence and almost 3.5 minutes with the chicken chromosome as the query

sequence. After considering the strand combinations to get full results, Vmatch is faster than our

algorithm. Vmatch used about 1.3 GB memory while processing the chicken and human sequences which is

less than required by MUMmer but more than our algorithm at 500 MB.

Vmatch is more efficient than our algorithm for constructing the suffix array files and similar but faster in

execution speed for finding ultraconserved sequences. One possible reason for the speed difference is our

algorithm produces more output in anticipation of the next stage of the workflow. The primary

disadvantage, which is seen with all the tools we reviewed, is the lack of explicit support for multiple

organisms; output results are not provided in a format allowing for a simple workflow provided by our

algorithm in Figure 2. Additional scripts are required to parse the output results, extract the relevant

substrings from the sequence, generate a new set of database files for the next stage of the workflow, and

with every stage maintain substring metadata so that final results can be correlated back to the original

sequences. All tasks that are handled automatically by our algorithm.

Conclusions

With more genomes becoming available at a faster rate, whole genome comparative analysis for multiple

organisms is both feasible and desirable in our search for biological knowledge. We argue that

bioinformatic programs should be forward thinking by assuming analysis on multiple (and possibly large)

genomes, then consider both memory and computational complexity during algorithm design to maximize

scalability. Our algorithm provides a case study for how a compromise design with a trade-off of disk space

versus memory space allows for efficient computation while only requiring modest computer resources. The

key advantages of our algorithm are:

• It produces output files that can be directly used as input for the next stage of the computational

pipeline. This completely eliminates the need to write additional “glue” programs to parse output
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files into a format required for later stages of the pipeline.

• By focusing on a specialized task, computation can be orders of magnitude more efficient than more

general algorithms, e.g. BLAST, making what use to be unreasonable analysis, quite possible. This

also frees up more time to analyze the results instead of waiting for the results.

• The algorithm works for any number of organisms. By maintaining the result files from previous

analysis, incorporating new organisms into the analysis is quickly and easily done without requiring

all of the previous analysis to be repeated.

While our focus has been on finding the longest ultraconserved elements among multiple genomes, in the

process we discovered that the genome in the suffix array data structure can be used for other tasks. One

example is searching for class II transposable elements which have the structure of inverted repeat

sequences flanking both ends of the transposase sequence. By performing the search for MCP’s for an

organism on itself then restricting the results to be within a certain distance apart (typical distances are

specific for transposon type), the inverted repeats can be quickly found throughout the whole genome.

In future work, there are some enhancements we would like to make. If we relax the restriction of 100%

identity then our algorithm tends to approach BLAST in capability by incorporating mismatches and gaps,

where at some point it is better to just use BLAST. However, a simple relaxation like allowing for a user

specified identity level will allow for more matches to be found. We also intend to explore additional

comparative analyses that can take advantage of the genome in the suffix array data structure, thus

providing a suite of comparative tools for use with multiple organisms.

Availability and requirements

We have provided our algorithm in the BioCocoa library which is the de facto Objective-C bioinformatics

framework instead of starting a new software package. The main functionality is provided in two

Objective-C classes, BCSuffixArray and BCMCP, which supports operations on suffix arrays and MCP files

respectively. By putting the functionality in general purpose classes, we hope this provides added utility as

other programs can utilize those classes for different bioinformatic analyses. The command line tools

described in this article directly utilize those classes and are provided as a BioCocoa application.

• Project name: BioCocoa
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• Project home page: http://bioinformatics.org/biococoa

• Operating system(s): Mac OS X, GNU/Linux

• Programming language: Objective-C

• Other requirements: GNUstep for GNU/Linux systems

• License: Creative Commons Share-Alike Attribution Version 2.5

• Any restrictions to use by non-academics: none
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Figures
Figure 1 - Workflow for Computing Maximal Common Prefixes between Two Organisms

The steps for computing the maximal common prefixes between two organisms involves preparing the raw

genome data into a set of sequence files in FASTA format, generating suffix array data structures from the

sequence files, computing the MCP’s in a pairwise fashion with the suffix arrays, then perform the union of

the pairwise files together to produce a single MCP result file.

Figure 2 - Tournament-style Intersection for Computing Maximal Common Prefixes between Multiple

Organisms

A generic workflow for intersecting the MCP’s in a tournament-style to produce the common sequences for

any number of organisms. Typically the number of MCPs becomes less than the total number of suffixes as

more organisms are intersected so the later stages of the workflow execute faster than the earlier stages.

This generic workflow can be easily modified to support more automated specialized processes, for example

comparing all the organisms within the clade of a phylogenetic tree, because the output of each stage can

be directly input to the next stage without any additional processing. Trimming the file is a separate step

only needed for reporting final results and does not alter the MCP file allowing it to be used for continual

stages of the workflow.
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Figure 3 - Suffix Array from Sequence

A sequence of length N produces N suffix strings which are sorted in the suffix array data structure as

shown with this 11 bp sequence and its corresponding suffix array. Each suffix string does not have to be

stored separately, instead character positions or offsets are used to reference back to the original sequence;

the offsets are the numbers to the right of each suffix.

Tables
Table 1 - Vertebrate Genomes

Vertebrate Genomes Size
Human Mar. 2006 (hg18) 3000 Mbp
Chimp Mar. 2006 (panTro2) 3100 Mbp
Rhesus Jan. 2006 (rheMac2) 2800 Mbp
Chicken May 2006 (galGal3) 1200 Mbp
Mouse Mar. 2006 (mm8) 2500 Mbp
Rat Nov. 2004 (rn4) 2800 Mbp
Cow May 2005 (bosTau2) 3000 Mbp
Dog May 2005 (canFam2) 2400 Mbp

Armadillo May 2005 (dasNov1) 3000 Mbp
Elephant May 2005 (loxAfr1) 3000 Mbp
Opossum Jan. 2006 (monDom4) 3400 Mbp

Fugu Aug. 2002 (fr1) 350 Mbp
Rabbit May 2005 (oryCun1) 3500 Mbp

Zebrafish Mar. 2006 (danRer4) 1700 Mbp
Tetraodon Feb. 2004 (tetNig1) 380 Mbp

X. tropicalis Aug. 2005 (xenTro2) 1700 Mbp
Tenrec July 2005 (echTel1) 3800 Mbp

All vertebrate genomes with the given assembly data where downloaded from the UCSC Genome

Bioinformatics Site [33]. Sizes from NCBI Genome Project web pages or approximated from downloaded

assembly data.
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