

WRF Simulation of Dividing Streamlines at Granite Mountain

Zachariah Silver¹, Reneta Dimitrova^{1,2}, H.J.S. Fernando¹, Tamás Zsedrovits^{1,3}, Laura S. Leo¹, Silvana Di Sabatino^{1,4}, Stefano Serafin⁵, Peter G. Baines⁶, Christopher Hocut^{1,7}, Yansen Wang⁷, Edward Creegan⁷, Melvin Felton⁷

¹Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame

² Atmospheric Physics - Department of Geophysics, National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences

- ³ Faculty of Information Technology and Bionics, Pazmany Peter Catholic University
- ⁴ Department of Physics and Astronomy, University of Bologna
- ⁵ Department of Meteorology and Geophysics, University of Vienna
- ⁶Department of Infrastructure Engineering, University of Melbourne, Australia
- ⁷U.S. Army Research Laboratory

Overview

- Motivation
- WRF Domain
- Dividing Streamline Theory
- **Results from Simulations**
- Summary and On Going Work
- Acknowledgements

Questions

Motivation

The goal of this work is to investigate synoptically driven stably stratified flows over Granite Mountain and the capability of WRF to capture streamlines, stream surfaces, and ultimately a dividing streamline.

Figure 1 from Fernando et al. 2015 combined with flow features in Brighton 1978

Photo Credit: M.Y. Thompson

WRF Domain

Dividing Streamline

A simple idealized flow obstacle to represent the dividing streamline.

U/Nh and Brunt–Väisälä frequency

> Non-dimensional height parameter = $\frac{U}{N h}$

- U =wind speed
- *h* = mountain height
- *N* = Brunt–Väisälä frequency

Solution Brunt–Väisälä frequency:
$$N = \sqrt{-\frac{g}{\rho_0} \frac{\partial \rho(z)}{\partial z}}$$

- g = gravity
- ρ = density

A simple idealized obstacle and flow to represent a dividing streamline in 3D

$U/Nh \approx 1$

A simple idealized obstacle and flow to represent a dividing streamline in 3D

Sheppard's Equation

$$P$$
 $\frac{U_{\infty}^2}{2} = \int_{H_s}^h (h-z) N^2(z) dz$

- h = height of terrain obstacle
- H_S = height of the streamline
- U_{∞} = upstream velocity
- ρ = density

This can be simplified to find the height of the dividing streamline: $H_s = h(1 - \frac{U}{Nh})$

Leo et al. (2015)

Surface Observations Comparison with WRF

WRF Vertical Profile

Vertical Release of Streamlines

Thursday October 8, 2015 • MATERHORN Investigator Meeting – V • University of Notre Dame

Simple Application of Sheppard's Equation

- $> H_s = h(1 \frac{U}{Nh})$
 - $\frac{U}{Nh} \approx 0.35$
 - h = 720m (relative to the surrounding surface)
- $> H_s = 468 \text{m} (720 \text{m} 468 \text{m} = 252 \text{m} \text{ below the peak})$
- Since the actual peak is 2029m above sea level the dividing streamline height should be equal to 1777m above sea level.
- The actual dividing streamline height is approximately 1830m (a difference of 53m)

Leo et al. (2015)

Speed Along a Streamline $H_s(0) = 1830$ m

Energy Changes Along a Streamline

Equation of Energy Along a Streamline

Equation of energy:

$$-\frac{\partial \boldsymbol{p}}{\rho} = \partial \left(\frac{1}{2}\boldsymbol{u}^2 + \boldsymbol{g}\boldsymbol{z}\right)$$

Energy Variations Along a Streamline

Energy Scatter Plots

Streamline Surface Released at $H_s(0) = 1830$ m

Thursday October 8, 2015 ♦ MATERHORN Investigator Meeting – V ♦ University of Notre Dame

Streamline Surface Released at $H_s(0) = 1650$ m

LiDAR Located on Sapphire Mountain

Photo Credit: Laura Leo

WRF Comparison with LiDAR

Summary and Future Work

- **WRF** is able to capture a dividing streamline
- The equation of energy in general applies along simulated streamlines
- Continue to investigate stream surfaces
- Further investigation of how properties change over a stream surface
- Understand the role of pressure perturbations on determining the height of the dividing stream line (or surface)
- > Utilize the available LiDAR results to compare with WRF results

Acknowledgements

This research was funded by Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program.

The European Union and the State of Hungary in the framework of TÁMOP-4.2.1.B-11/2/KMR-2011-0002

This research was supported in part by the Notre Dame Center for Research Computing through [CRC resources] with special thanks to Dodi Heryadi.

Contributions to this work have been made by many other MATERHORN participants Thank you!

