1	Sensitivity of Near-Surface Temperature Forecasts to
2	Soil Properties over a Sparsely Vegetated Dryland
3	Region
4	
5	Jeffrey D Massey ¹ , W. James Steenburgh, and Sebastian W. Hoch
6	Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
7	
8	Jason C. Knievel
9	National Center for Atmospheric Research, Boulder, Colorado
10	
11	
12	
13	
14	
15	

¹ Corresponding author address: Jeffrey D. Massey, Department of Atmospheric Sciences, University of Utah, 135 South 1460 East Room 819, Salt Lake City, UT, 84112. *E-mail*: jeff.massey@utah.edu

Abstract

17	Weather Research and Forecasting Model (WRF) forecasts over the Great Salt Lake
18	Desert erroneously underpredict nocturnal cooling over sparsely vegetated silt loam soil textures
19	with a mean positive bias error in temperature at 2 m (AGL) of 3.4°C in the early morning [1200
20	UTC (0500 LST)]. This bias is related to the improper initialization of soil moisture
21	initialization and the parameterization of soil thermal conductivity in silt loam soil. Forecasts of
22	2-m temperature can be improved by initializing with observed soil moisture and by replacing
23	the Johansen (1975) parameterization of soil thermal conductivity in the Noah land-surface
24	model with that proposed by McCumber and Pielke (1981) for silt loam and sandy loam soil
25	texture classes. Case studies demonstrate how these changes reduce the single-day bias in 2-m
26	temperature over silt loam soil textures at night by as much as 4.3°C. The biggest near-surface
27	temperature improvement occurred during low soil-moisture periods, but this improvement is
28	very sensitive to the initialized soil moisture. Predicted ground heat flux and soil thermal
29	conductivity also more closely match observations made over silt loam soil when the McCumber
30	and Pielke (1981) method is used along with observed soil moisture. We anticipate similar
31	results in other dryland regions with analogous soil types, sparse vegetation, and low soil
32	moisture.