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It is argued that the mixing efficiency of naturally
occurring stratified shear flows, γ = Rf/(1 − Rf ),
where Rf is the flux Richardson number, is dependent
on at least two governing parameters: the gradient
Richardson number Ri and the buoyancy Reynolds
number Reb = ε/vN2. It is found that, in the range
approximately 0.03 < Ri < 0.4, which spans 104 <

Reb < 106, the mixing efficiency obtained via direct
measurements of fluxes and property gradients
in the stable atmospheric boundary layer and
homogeneous/stationary balance equations of
turbulent kinetic energy (TKE) is nominally similar
to that evaluated using the scalar balance equations.
Outside these Ri and Reb ranges, the commonly used
flux-estimation methodology based on homogeneity
and stationarity of TKE equations breaks down
(e.g. buoyancy effects are unimportant, energy flux
divergence is significant or flow is non-stationary).
In a wide range, 0.002 < Ri < 1, the mixing efficiency
increases with Ri, but decreases with Reb. When Ri is
in the proximity of Ricr ∼ 0.1–0.25, γ can be considered
a constant γ ≈ 0.16–0.2. The results shed light on the
wide variability of γ noted in previous studies.

1. Introduction
The specification of eddy viscosity and diffusivities
remains a central problem in developing predictive
models for oceans, lakes and the atmosphere. For stably
stratified flows, the vertical diffusivities can be defined
in terms of vertical momentum (u′w′, v′w′) and buoyancy
(w′b′) or temperature (w′T′) fluxes as

KU = − u′w′
∂U/∂z

or KV = − v′w′
∂V/∂z

(1.1)

and

KT = − T′w′

∂T̃/∂z
, (1.2)
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where KM ≡ KU = KV and KT are the eddy viscosity and diffusivity, respectively, and their ratio
Prtr = KM/KT is the turbulent Prandtl number [1]. When temperature T is the major contributor
to density ρ, as in dry atmosphere, freshwater lakes and some marine environs, the buoyancy
fluctuations become b′ = −g(ρ − ρo)/ρo = −gρ′/ρo ≈ αgT′, and KT can be interpreted as the mass
diffusivity. Here, g is the gravity, ρo the reference density and α the thermal expansion coefficient.
The instantaneous velocities (u, v, w) in the (x, y, z) directions are written in the usual forms
u = U + u′, v = V + v′, w = W + w′, the temperature T = T̃ + T′ and the density ρ = ρ̃ + ρ′, where
U, V, W, T̃ and ρ̃ represent the mean and the primes are the fluctuations. In the atmosphere,
sonic anemometers and gradient measurements allow direct evaluation of KM and KT from (1.1)
and (1.2) by turbulent fluxes (using covariance calculation) and the gradients of temperature
and velocity components at a suitable vertical separation. Here, the linear overbar stands for
averaging over specific time segments (assuming Taylor frozen turbulence hypothesis). In oceans
and other water bodies, however, the measurement of fluxes still remains a technical challenge,
and eddy diffusivities are obtained either indirectly via local microstructure measurements or
directly by tracer dispersion observations over large space–time domains. In the former, the
simplified equations for the budget of turbulent kinetic energy (TKE) q2 = 1/2(u′2 + v′2 + w′2)
and turbulent thermal variance Θ2 = 1/2T′2,

∂q2

∂t
= P − B − ε (1.3)

and
∂Θ2

∂t
= −w′T′ ∂T̃

∂z
− 1

2
χ , (1.4)

are used with the assumption of homogeneity (neglecting advection and diffusion of q2 and
Θ2), where P = −((u′w′(∂U/∂z) + v′w′(∂V/∂z)) is the shear production of TKE and B = −b′w′
is the buoyancy flux [1]. Here, mixing is assumed to be internal; that is, TKE is produced
and approximately balanced locally vis-à-vis external mixing where the energy flux divergence
and advective terms transport turbulence, which is generated elsewhere, to the mixing location
[2]. Here,

ε = 15
4

ν

⎡
⎣

(
∂u′
∂z

)2
+

(
∂v′
∂z

)2
⎤
⎦ and χ = 6D

(
∂T′
∂z

)2
(1.5)

are the dissipation rates of q2and Θ2 in isotropic approximation, and ν and D are the molecular
viscosity and diffusivity, respectively. As mentioned previously, ε and χ in natural waters are
estimated using microstructure profiling measurements [3–8] as well as acoustic Doppler current
profiler and acoustic Doppler velocimeter records [9–12].

Defining traditional flux Richardson number as [1]

Rf = B
P

, (1.6)

or using a generalized definition of Rf for non-stationary and inhomogeneous turbulence [13],

Rf ≡ RfII = B
ε + B

, (1.6a)

where the denominator accounts for all local and non-local sources of the TKE production, and
introducing the mixing efficiency [14]

γ ≡ B
ε

= Rf
1 − Rf

, (1.7)

it is possible to write the stationary balance of TKE using equations (1.3) and (1.2) as

KT = γ
ε

N2 , (1.8)

or in non-dimensional form,
Rm = γ Reb, (1.9)
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Table 1. Various methods of evaluation the diffusivity KT and mixing efficiency γ using measurements of temperature w′T ′
and buoyancy B= −b′w′ fluxes and corresponding gradients ∂ T̃/∂z and N2 as well as the turbulent kinetic energy ε and
temperatureχ dissipation rates.

method/parameter KT γ = B/ε

indirect evaluation of γ viaχ KT ≡ Kχ = χ/2(∂ T̃/∂z)2 (1.12) Kχ/ν = Rmχ = γχ Reb (1.9) and

(1.10b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

evaluation of γ (using flux KT = −w′T ′/∂ T̃/∂z ≡ Kf (1.2) Kf/ν = Rmf = γfReb (1.9) and (1.10a)

measurements of KT)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

direct evaluation of γ (measurements — γ ≡ B/ε = Rf/1 − Rf (1.7) and

of fluxes and dissipation) RfII = B/ε + B (1.6a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where

Rm = KT

ν
(1.10)

is the mixing Reynolds number. Note that (1.6a) is equivalent to (1.6) if pure internal mixing is
occurring, that is shear-produced turbulence is dissipating locally and consumed for buoyancy
flux. For ocean mixing, Osborn [14] suggested Rf ≤ 0.17, which gives an upper bound for KT in
(1.8) with γ ≈ 0.2.

For the case where the temperature flux and gradients are measured directly Kf ≡ KT, the
mixing Reynolds number (1.10) becomes

Rmf = Kf

ν
, (1.10a)

and the buoyancy Reynolds number is given by

Reb = ε

vN2 , (1.11)

where N2 = (g/ρo)dρ̃/dz is the squared buoyancy frequency.
Conversely, following (1.2) and (1.4), the temperature diffusivity KT for stationary turbulence

can be estimated as

KT ≡ Kχ = χ

2(∂T̃/∂z)2
, (1.12)

where ∂T̃/∂z can be directly measured, and χ can be estimated from temperature microstructure
data. The corresponding mixing Reynolds number is (cf. equation (1.10a))

Rmχ = Kχ

ν
, (1.10b)

and the mixing efficiency γχ ≡ γ can be estimated using (1.8) and (1.12) [4], provided that the
assumptions of stationarity and homogeneity are satisfied simultaneously [15]. Another approach
of estimating γ ≡ γf is the flux-based measurement of KT ≡ Kf using (1.2) and (1.8) or γ ≡ γo using
(1.7) with (1.6) or (1.6a), where the temperature flux is measured directly. For convenience, these
are listed in table 1.

The objectives of this paper are (i) to compare the mixing efficiencies γχ and γf calculated
by the two methods and (ii) to discuss the dependence of mixing efficiency on Ri and Reb. The
canonical flow type of interest here is the stratified shear flow that is common in oceans, lakes
and the atmosphere. We will use data taken in the atmospheric nocturnal boundary layer at very
high Reynolds numbers.

The present work is particularly helpful in delving into the variability of γ and therefore Rf
observed in different studies that have employed a variety of techniques by analysing mixing
mechanisms [15–17]. In the laboratory, Linden [18], Rohr et al. [19], Rohr & Van Atta [20] and
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Monti et al. [21], among others, have used non-stationary turbulence, whereas Strang & Fernando
[22] and McEwan [23] used stationary or quasi-stationary flows, yielding somewhat different
results. Numerical studies with evolving [17,24,25] and stationary flows [26] show disparate
Rf and γ behaviour. In all, past results illustrate the dependence of Rf and γ on the mixing
mechanism [27], the state of evolution of mixing [21,24,25,28], the nature of forcing (internal
versus external [2,29]) and even the effect of topography [30]. Results of several experimental
and theoretical studies that showed a clear dependence of γ on Ri were summarized in fig. 10
of Lozovatsky et al. [31], and the repercussions of variable mixing efficiency are discussed in
Balmforth et al. [32]. The notion of Phillips [33] that γ grows with Ri, reaches a maximum at
some Richardson number (0 < Ri <∼ 1), and then decreases has been supported by laboratory
experiments [18,34], measurements in a stably stratified atmospheric boundary layer [35] and
used in the Goddard Institute for Space Studies (GISS) oceanographic numerical model of Canuto
et al. [36]. Initial attempts to estimate γ from oceanic flux measurements and balance equations of
q2 and Θ2 yielded a γχ that is significantly smaller than γf (a single depth towing measurements
in a tidal front by Gargett & Moum [37]), but the mixing efficiency was confined to a narrow range
(0.13–0.17) on the basis of vertical profiling through turbulent patches [38]. The authors noted a
large uncertainty for γ estimates owing to technical difficulties of flux measurements in the ocean
interior and a limited length of observational records.

It was our hope that the evaluations of γ from a comprehensive dataset that allows direct
measurement (using γo and γf) and indirect evaluation (via γχ ) of γ will help clarify the wide
variability of mixing efficiencies reported in the literature. Furthermore, our dataset allows
evaluation of γ as a function of governing variables of natural stratified sheared flows.

2. Governing parameters
Consider a stratified shear flow away from the boundaries, which is characterized by the
buoyancy frequency N and mean shear Sh =

√
(dU/dz)2 + (dV/dz)2, with their length scales

of variation LN and LSh, respectively. The turbulence in the flow is specified by a characteristic
velocity q, length scale ltr and time scale τ . The molecular parameters involved are v and D. Using
ε ≈ q3/ltr, the governing dimensional variables become N, Sh, ε, q, v, D, LN , LSh and τ , yielding the
governing non-dimensional variables Ri = N2/Sh2, Reb = ε/vN2, SN = Sh × (q2/ε), τ × Sh, ltr/LSh,
ltr/LN and Pr = v/D, where ltr ∼ q3/ε has been reintroduced. For slowly spatially varying flows
or turbulent regions that are much smaller than LN and LSh, the governing parameters become
the gradient Richardson number Ri, buoyancy Reynolds number Reb and Prandtl number Pr. The
additional constraint is the evolution of turbulence in equilibrium with shear (whence the shear
number SN becomes a constant [39]). At high Reynolds numbers, or at geophysical scales, it is
possible to invoke the Reynolds number similarity, and assume that the flows are Pr independent.

If local shear production of turbulence is the dominant source of (internal) mixing with ltr =
(LSh, LN), the simplest stationary TKE balance KMSh2 ≈ ε gives the following relationship between
Reb, Ri and Rm:

Reb ≡ ε

νN2 = KM

ν

Sh2

N2 = RmPrtrRi−1, (2.1)

where the turbulent Prandtl number Prtr = KM/KT itself can be a function of Ri whence Ri exceeds
a critical Richardson number Ricr ≈ 0.1–0.25 [40,41]. Conversely, Prtr tends to be close to unity
for Ri � Ricr [1,31,40,42]. Shih et al. [25] obtained an inverse dependence between Reb and Ri
similar to equation (2.1) (their eqn (5.1)), and also showed a relatively weak decrease in Prtr (from
approx. 1 to 0.85) when Reb increases from approximately 10 to 100. For Reb >∼ 100, Prtr remained
approximately constant. Although Ri and Reb are formally independent governing parameters,
but for shear-generated turbulence, they are related to each other in a specific parameter range.
Nevertheless, it is important to note the external (the mean shear for Ri) and internal (the
dissipation rate for Reb) nature of these parameters in turbulent stratified flows.
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Figure 1. (a) Along-slope component of wind velocity Uslp and temperature T4.5 at h= 4.5 m agl; the number of segments
chosen for the calculation of mixing efficiencyγ is given along the upper axis. (b) Temperaturew′T ′ andmomentum − u′w′
fluxes at h= 4.5 m agl; the night-time sections of the records are shadowed in both panels. (c) A sketch of the observational
setup at the meteorological mast: thermistors T-1 and T-2, cup anemometers CA-1 and CA-2, sonic anemometer/thermometer
SAT (see text for details).

3. Observations and data processing
The data (wind velocity and sonic temperature) used in this study were obtained during the
vertical transport and mixing experiment (VTMX) in Salt Lake City, Utah conducted from
30 September to 7 October 2000 (see Monti et al. [43] and Princevac et al. [44] for a general
description of the experiment). A meteorological mast at a gentle (approx. 4◦) mountain slope
was equipped with two three-cup anemometers at heights h = 2.0 (CA-1) and h = 7.3 (CA-2) m
above ground level (agl) and with two thermistor sensors at h = 1.8 (T-1) and h = 6.9 (T-2) m agl.
The threshold speed of the anemometers was 0.5 m s−1, with an accuracy of 1.5 per cent. The
5 min averaged data were collected to characterize the mean wind speed and air temperature.
The high-frequency (10 Hz sampling rate) records of velocity components u (downslope), v

(cross-slope), and w (upward) and temperature T were obtained at h = 4.5 m agl using a sonic
anemometer/thermometer (Applied Technologies, Inc. and Metek GmbH). The resolution and
accuracy of data were 0.01 and 0.05 m s−1, and 0.01◦C and 0.05◦C, respectively. A sketch showing
positions of the instruments at the mast is given in figure 1c. Clear skies and light synoptic winds
characterized the weather conditions from 30 September until 6 October. During the last night,
wind increased up to 12 m s−1 owing to synoptic influence. Because of the very dry atmosphere
(relative humidity during the experiment did not exceed 5–8%), we did not apply a moisture
correction to the sonic temperature.

The 5 min averaged records of temperature, along-slope wind velocity and vertical
components of temperature and momentum fluxes at h = 4.5 m agl are shown in figure 1a,b.
The night-time w′T′ were predominantly negative as a result of the stable stratification near
the ground (note 30 September 2000 is day 274 of 2006; this differs by 1 day from Monti et al.
[43], where the leap year adjustment was not made). To obtain accurate estimates of γ , specific
20 min segments of data with almost constant fluxes and winds were selected (see a number of
such segments for each night in figure 1a). Note that the homogeneity and stationarity of flow at
specified segments were confirmed by comparing (1.6) and (1.6a). An example of dT̃/dz, |Sh| and



6

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120213

......................................................

hours of 3–4 October 2000 (local time)

0.1

1.0

10.0

Ri

|Sh|

Ri

18.43 21.07 23.31 1.55 4.19 6.43

277.8 277.9 278.0 278.1 278.2 278.3
days of the year 2000 (local time)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

0.5
|S

h|
 (

s–1
)

dzT~d

T
/d

z 
(°

C
 m

–1
)

~
d

Figure 2. The gradient Richardson number Ri, themagnitude ofmean shear |Sh| and the gradient ofmean temperature dT̃/dz
in a stably stratified nocturnal boundary layer (h= 1.8–6.9 m agl) on 3–4 October 2000. The 20 min segments of the records
selected for the calculation of γ are shown by pluses.

Ri records during a typical night (3–4 October) is given in figure 2, with seven segments chosen
for the calculation of γ . The flow was usually weakly stable at the beginning of the night (Ri < 0.1
in this case). At about midnight (figure 2), a local maximum of Ri ≈ 2 was observed owing to
a sharp drop of shear and a continuous increase in dT̃/dz, wherein the flow was dominated by
quasi-periodic internal-wave oscillations [44]. Oscillations with longer periods of approximately
2–3 h were also observed [35] that could be attributed to global intermittency associated with
periods of intense turbulence production and enhance stability. Continuous cooling of the surface
and general reduction of mean shear towards the end of the night led to an increasing Richardson
number. The natural meteorological variability during the observational period of seven nights
allowed estimates of γ to be obtained over a wide range of Ri with high statistical confidence.

The mixing efficiency, as mentioned in table 1, was calculated directly using equations (1.6) or
(1.6a) and (1.7) and equations (1.9) and (1.2) to obtain γo and γf, respectively, as well as indirectly
to yield γ ≡ γχ (equations (1.9) and (1.12)). In order to estimate the mixing efficiency directly
(i.e. γo in table 1), we first compare the flux Richardson numbers Rf and RfII defined differently
for stationary (equation (1.6)) and non-stationary (equation (1.6a)) balances of TKE. Strong linear
correlation between the two variables can be seen in figure 3 with r2 = 0.97 for the best least-square
linear regression RfII = 1.1Rf . This result suggests that statistically, RfII and Rf are almost identical,
supporting the assumption of homogeneity and stationarity for the dataset considered. Thus, we
can confidently use equation (1.6) paired with equation (1.7) to calculate mixing efficiency γo ≡ γf.

The covariance w′T′ and Reynolds stresses were computed for selected 20 min segments using
the direct covariance method and integrating the corresponding co-spectra (see several examples
of ωEwT(log ωn) in figure 4a). A characteristic relative difference between the two temperature flux
estimates was 11 per cent by amplitude, with 21 per cent standard deviation. The gradients of the
mean temperature were taken as the finite differences between the 20 min averaged temperatures
T̃1 and T̃2 located �h = 5.1 m apart. The TKE and temperature dissipation rates, ε and χ , were
obtained from the inertial and inertial-convective subranges of the velocity and temperature
spectra

Ew(κ) = ckwε2/3κ−5/3 and ET(κ) = cTε−1/3χκ−5/3, (3.1)

at each i segment, and the 20 min averaged wind velocities were used to convert the frequency
spectra of w′ and T′ to the corresponding wavenumber spectra Ew(κ) and ET(κ), where κ is the
horizontal wavenumber. To ensure high quality of the dissipation estimates, only those spectra
that exhibited a near-perfect −5/3 subrange were used with the canonical values of spectral
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Figure 3. Correlation between the flux Richardson numbers Rf and RfII defined by equations (1.6) and (1.6a), respectively.

constants [45]; for the longitudinal flow component (which is u in our case), cku = 0.52 and for
transversal components (w or v), ckw = ckv = 4/3cku = 0.67 (an example is given in figure 4b). A
concern was the significant variation of the Obukhov–Corrsin constant cT reported in previous
studies. Sreenivasan [46] suggested 0.3 < cT < 0.5 with a tendency for lower cT at higher Reynolds
numbers; for that reason, cT = 0.3 was used in this study. The spectra for u′, v′ and w′ exhibited
clear inertial subranges, which, as expected, were wider for Eu(κ) and Ev(κ) compared with
Ew(κ). At many segments, the flow was not horizontally unidirectional, thus posing problems
of selecting the longitudinal and transverse directions. Therefore, the estimates of ε were made
using Ew(κ) with ckw = 0.67 because w is the unequivocal transversal component. Two methods
were used for the Rm (equation (1.10)) calculation, based on KT ≡ Kf using the temperature flux
and gradient measurement in (1.2), i.e. Rmf, and on KT ≡ Kχ obtained via (1.12) by estimating χ

through ET(κ), i.e. Rmχ .

4. Dependence of mixing Reynolds numbersRmχ andRmf onRi
On the basis of arguments of §2, the diffusivities must be dependent on the gradient Richardson
number Ri as well as the buoyancy Reynolds number Reb. To explore the Rm(Ri) dependence, a
combined plot of Rmf and Rmχ versus Ri is shown in figure 5. Both diffusivities therein are almost
identically affected by Ri following approximately Rm ∼ Ri−3/2 [47]. This simple parametrization
has been previously used in several numerical models [48]. The Ri−3/2 fit is, however, applicable
for a relatively narrow range of Ri.

In figure 5, Rmf flattens at a value of Rmf ≈ 2.2 × 103 in the range of Ri between Ricr = 0.25
and Ri = 1, and may even show a slightly rising tendency at larger Ri, although the latter cannot
be substantiated owing to availability of few experimental points. It is, however, a possibility
that the Rmf samples at Ri > 1 represent intermittent turbulent patches that were advected to
the observational site rather than generated locally by weak vertical shear. In this case, for
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Ri > 1, the local Ri does not represent the state of turbulence in the same way as that for
continuous turbulence.

On the contrary, Rmχ continuously decreases beyond Ricr, but much slower than in the
Ri0 − Ricr range, where Ri0 ≈ 0.025, being about an order of magnitude smaller than Ricr. For
Ri > 1, Rmχ tends to a background value Rmb = 600. In the original stably stratified layer, shear-
induced mixing onsets at Ri = Ricr, which rapidly grows until the Richardson number decreases
to Ri = Ri0, and then it reaches a saturation level typical of non-stratified shear flows. At Ri < Ri0,
Rmf flattens, deviating from the −3/2 power law towards Rmf ∼ 3 × 105, but Rmχ continuously
increases at low Ri, reaching approximately 107 at Ri ≈ 10−3.

The dependences of Rmf and Rmχ on Ri evident from figure 5 can be approximated by a
scaling formula

Rm = Rmn

(1 + Ri/Ri0)s + Rmb, (4.1)
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Figure 5. Themixing Reynolds numbers Rmχ and Rmf versus Ri, approximated by a simple power fit Rm ∼ Ri−3/2 (the double-
arrow line (a)) for the box-bounded samples 0.03< Ri < 0.4, and by the scaling formula (4.1) with Rmn = 2 × 107, R0 =
2.5 × 10−3 (b) and Rmn = 3 × 105, R0 = 2.5 × 10−2. (c) The rectangle bounds the Ri range 0.03< Ri < 0.4 and the range
of Rmf and Rmχ (1.5 × 103–7 × 105) for linearly correlated normalized diffusivities.

with s = 2. For Rmχ , the fit is shown by the dashed line (b), with Rmn = 2 × 107 and
R0 = 2.5 × 10−3, whereas the heavy line (c) is drawn for Rmf with Rmn = 3 × 105 and R0 = 2.5 ×
10−2. The formula (4.1) belongs to the family of negative Ri power-law parametrizations of eddy
viscosity and diffusivity in stably stratified flows [49–55]. Different s values have been proposed,
ranging between 1 and 2.5. The value of Ri0 in (4.1) is usually taken from 0.1 to 0.3; however,
Ri0 as low as 0.02–0.05 has been used sometimes to satisfy experimental data [31]. The fitted
Ri0 = 2.5 × 10−3 is much smaller than the previously suggested values, and the corresponding
Rmn = 2 × 107 is also unusually large. Perhaps, the presence of wall-induced turbulence in the
present case may explain the anomalies; previous comparisons of (4.1) have been conducted with
data taken from the thermocline or free shear flows.

This can be checked by applying the law-of-the-wall [45] test for vertical diffusivity Kz = κu∗z,
where u∗ and κ = 0.4 are the friction velocity and von Karman constant, respectively. All the
highest values of Rmf and Rmχ in figure 5 that correspond to the lowest Ri < 10−2 represent
seven segments of data obtained on 7 October under strong katabatic winds (the along-slope
wind component varied between −10 and −12 m s−1 (figure 1). A characteristic estimate of
u∗ for these data is approximately 1 m s−1 (the quadratic law formula). Thus, at h = 4.5 m agl,
Kz ≈ 2 m2 s−1, and hence Rm ≈ 1.5 × 105. This value matches well with the normalized diffusivity
Rmf in figure 5 at the lower end of the Ri axis, but it is more than an order of magnitude smaller
than the corresponding Rmχ for the same values of Ri. The test implies that the balance-based
calculation of Rmχ produces unreliable estimates of the normalized diffusivity for very low
Richardson numbers (Ri < 0.03). Probably, we can make the same conclusion about the flux-based
estimates Rmf for high Ri > 1. Hence, the dependence of mixing Reynolds number Rm on Ri is best
represented by equation (4.1) with Rmn = 3 × 105 and R0 = 2.5 × 10−2, which is shown by line (c)
in figure 5.



10

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120213

......................................................

log10Reb

2

3

4

5

6

7

3 4 5 6 7 8

2

3

4

5

6

7 Rmc = g Reb; g = 0.16; r2
 = 0.96

Rmf = xReb
p; p = 1/2; x @ 33; r2

 = 0.92

(a)

(b)

g = 0.13–0.19
95% confidence bounds for

95% confidence bounds for
x = 18–61; p = 0.45–0.55  

lo
g 10

 R
m

f
lo

g 10
 R

m
c

Figure 6. Regression plots between the logarithms of mixing Reynolds numbers (a) Rmχ = Kχ/ν and (b) Rmf = Kf/ν and
the buoyancy Reynolds number Reb = ε/νN2. The parameters of the regression equations with 95% confidence bounds are
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5. Mixing efficiency

(a) Calculations of γ and its dependence onReb
The estimates of γχ and γf can be obtained from the regression plots Rmχ (Reb) and Rmf(Reb)

shown in figure 6a,b. According to (1.8), γ must be constant when Rm and Reb are linearly
dependent, which is satisfied for the regression Rmχ (Reb) shown in figure 6a as

Rmχ = γχ Reb, where γχ ≈ 0.16. (5.1)

For Rmf(Reb), however, the least-squared fit yields

Rmf = ξ(Reb)p (5.2)

(figure 6b), where ξ ≈ 33 is a non-dimensional regression coefficient and the exponent p = 1/2.
The above leads to the Reb dependence of

γmf = coξRe−1/2
b . (5.3)

In addition, γo, which is equivalent to γmf, was evaluated (table 1) using independent
measurements of B and P, and the results are approximated in figure 7 as

γo = 50Re−1/2
b , (5.4a)
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The straight line is the least-squared approximation of the data by equation (5.2) with co = 1.5 (the 95% confidence bounds for
co are 1.3 and 1.7); the coefficient of determination r2 for the fit is given in the legend.

where co ≈ 1.5. Note that the approximations (5.1), (5.2) and (5.4a) are obtained with high
statistical confidence, with coefficients of determination r2 = 0.96, 0.92 and 0.93, respectively.

At first glance, γχ ≈ 0.16 obtained in (5.1) for the nocturnal stably stratified atmospheric
boundary layer is in good agreement with many previous estimates of γ for natural waters. In
ocean mixing studies, γ = 0.2 is frequently used [4,14,54,56–63]; however, higher (up to 0.4) and
lower (approx. 0.1) values of γ have also been suggested (e.g. [64] and [38,65,66]). Limnologists
[13,67,68] usually prefer γ = 0.15–0.17, or in some cases, even smaller values, γ = 0.04–0.06 [69],
at very low stabilities. Recent analysis of DNS data [15,25] showed an approximately linear
regression between Rmχ and Reb, also supporting γ = 0.17, but only in a relatively narrow range
of Reb = 7–102. The authors identified this range as a stationary transition turbulent regime
sandwiched between decaying and developing turbulence.

Further, the direct numerical simulation (DNS) data [25] produced Rmf that appeared to
be proportional to 2PrRe1/2

b for Reb = 102–103. This is identical to the functional dependence
(5.3) shown in figure 6b based on our atmospheric dataset for much larger buoyancy Reynolds
numbers, Reb > 103, and therefore the dimensionless constant ξ is different. Results of several
laboratory experiments [70–72] compiled in Shih et al. [25], together with DNS data, suggest that
Rm ∼ Re1/3

b (in our notation) when Reb increases from 102 to 105. Note that the diffusivity in the
laboratory experiments of Barry et al. [70] with grid-generated turbulence was calculated using
the change of system’s background potential energy before and after mixing events, and hence is
an integral measure of different turbulent regimes. A slightly weaker than Re1/2

b dependence can
be suggested for the eight most energetic (log10 Reb > 6.5) samples shown in figure 6b that can be
approximated by a power function Rmf ∼ Re0.4

b . It is, however, reasonable to conclude that for the

atmospheric nocturnal boundary layer Rmf ∼ Re1/2
b for Reb >≈ 104. The difference points to the

sensitivity of γ to the calculation methods used as well as to the nature of the flow.

(b) Interdependence betweenRmf andRmχ

In order to examine the disparity between the constant (equation (5.1)) and Reb-dependent
(equation (5.3)) mixing efficiencies evaluated using different methods, we analysed the
relationship between mixing Reynolds numbers Rmχ and Rmf (figure 8). It appeared that
68 per cent of data in the plot occupy a relatively narrow range of intermediate values of Rmχ

and Rmf (within the rectangle), wherein the linear regression Rmf = cRRmχ is valid with a
relatively high coefficient of determination r2 = 0.64 and a regression coefficient cR = 0.65,
having 95 per cent confidence bounds from 0.53 to 0.79. The deviation of cR from the ‘perfect
agreement’ case of cR = 1 can be attributed to the uncertainties of evaluating ε and χ using
Kolmogorov and Obukhov–Corrsin spectra, especially those associated with spectral constants
ckw and cT in equation (3.1) and flux measurements.
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lines show the 95% confidence bounds of the regression. The data in the box are those that are also boxed in figures 5 and 6.

The difference between Rmf versus Rmχ is substantial at high and low ends of the Rm diagram,
where approximately 106 < Rmχ < 2 × 107 and Rmf < (2–3) × 105. This is equivalent to high and
low values of Reb (figure 6a,b). Note, however, that large and small values of turbulent variables
are usually subjected to highest uncertainties.

The striking loss of the parity between Rmf and Rmχ (or Kf and Kχ ) at small and large Reb
invites explanation, which has a bearing on the estimation of fluxes in natural waters. Because
Reb ∼ (LO/LK)4/3, where LO = (ε/N3)1/2 and LK = (ε/ν3)1/4 are the buoyancy (or Ozmidov) and
Kolmogorov scales, respectively, Reb � 1 implies very weakly stratified turbulence, where the
TKE production essentially balances the dissipation, and fluxes are determined by r.m.s. velocity

and temperature fluctuations (w′T′ = cθ w′21/2
T′21/2

, cθ being a correlation coefficient [73]). This
flux saturation, a reflection of a weak gradient or entraining fluid from non-turbulent regions,
also implies non-stationarity and hence unsuitability of indirect methods of flux evaluation. On
the other hand, small Reb implies lack of the inertial subrange, which is essential for indirect
flux estimation. A stationary balance between production of TKE, buoyancy flux and the rate of
dissipation can be established only in a specific (figure 8) intermediate range of Reb.

In other words, in fully developed turbulence at high Reb = 107–108, a constant rate of
mixing sustains until the density/temperature gradient almost completely erodes to a level
that cannot uphold continuous growth of buoyancy (temperature) flux, whence the normalized
diffusivity Rmf tends to saturation (compare the highest Rmf values in figures 5 and 6b). Less
energetic turbulence (Reb < 104) confounded by stratification produces weak mixing, which is
characterized by the smallest Rmf ≈ (2–3) × 103. The results indicate that highly energetic (high
Reb) as well as underdeveloped (low Reb) turbulence does not support stationary, non-diffusive
and non-advective balance of Θ2 in stratified flows. These findings are consistent with the
interpretation of DNS data by Shih et al. [25]. The difference is the actual range of Reb (a narrow
one in both studies) where stationary turbulence prevails. The results can also be cast in terms of
Ri, which is discussed below.

(c) Dependence of γ onRi
The parametrization of mixing Reynolds number Rmf as a function of Ri given in §4 is a good
representation for Richardson numbers below approximately 1. We have directly evaluated
γf ≡ γo (equation (1.6a) paired with equation (1.7)) and plotted it in figure 9 as a function of
Ri. The growing trend of γo(Ri) up to Ri ≈ 1 seen here has been reported in several laboratory
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represent, within scatter, an approximately constant mixing efficiency. The horizontal thin dashed lines show the box-averaged
〈γo〉 = 0.2 and 〈Ri〉 = 0.1, and the dash-dotted line is the box-median value of [γo]= 0.165. The shaded data correspond to
the two samples in figure 5, which cannot be explained by local effects.

experiments, numerical and field studies [20,32,69,74–76]. Lozovatsky et al. [31] proposed an
approximation,

γo = 0.01 + Ri − 0.53Ri2, (5.4)

to the GISS modelling results of Canuto et al. [36], in which the eddy coefficients are parametrized
using specific damping functions. If we discard in figure 9 the two largest samples of γo

corresponding to Ri � 1 as outliers (per discussion on two largest Rmf samples shown in figure 5
for Ri > 4), then the data trend broadly mimics equation (5.4), although the scatter is high. A better
fit to this specific dataset is

γo = 0.005 + 1.7Ri − 1.1Ri2, (5.5)

which nicely captures the main trend shown in figure 9 by a bold line. The squared box in figure 9
encompasses the same range of Ri as that in figure 5 (0.03 < Ri < 0.4) and the corresponding range
of Rm boxed in figures 6 and 8. The box-averaged mixing efficiency appeared to be equal 〈γo〉 =
0.2, with the box-median value [γo] = 0.165. This is close to γ = 0.16 obtained using equations (1.8)
and (1.12) in the log10 Reb range 3.7–5.7 (figure 6a). The box-averaged Richardson number 〈Ri〉 =
0.1 is smaller than the conventional critical value Ricr = 0.25, but still is in the range where shear-
induced turbulence and internal mixing are dominant.

The above result can explain why a majority of microstructures in stratified oceans and
lakes, where mixing is generated mainly by shear instabilities with Ri slightly below critical,
leads to γ = 0.16–0.2 when evaluated using indirect methods (table 1). Note that atmospheric
and laboratory measurements have spanned a wide range of Ri and Reb, and hence exhibited
significant variations of γ . A monotonic increase in γo with Ri can be seen from about 0.01 at
Ri ≈ (2–3) × 10−3 to 0.4–0.5 when Ri is approaching unity. However, in a limited range around Ri
approximately 0.1, the mixing efficiency can be considered approximately constant close to 0.2.
Note that in a weakly stratified upper oceanic layer, the median of Ri can be as low as 0.1 [31].
The cumulative distribution of the Richardson number is often well approximated by a lognormal
probability law, showing that the probability of Ri < 0.25 can be above 60 per cent and for Ri < 1,
can approach 80 per cent.

Considering that two variables Ri and Reb are involved in determining fluxes (§2), we plot
contours of γo(Ri, Reb) in figure 10, which show that γo in the boxed area (Ri and Reb range
associated with shear-generated turbulence) is between 0.1 and approximately 0.3. On the basis
of our data, the upper cut-off Reup

b was identified as approximately 5 × 105 (Ri < 0.4), beyond
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Figure 10. The contour plot of mixing efficiencyγo as a function of Ri and Reb. The rectangle confines the same range of Ri and
Reb as in figures 8 and 9.

which buoyancy effects are insignificant, whereas the lower limit was Relw
b ≈ 104 (Ri > 0.03),

signifying the absence of a clear inertial subrange due to suppression of local production of TKE.
The variability of γo outside this Ri − Reb range is possibly due to other types of TKE sources
unrelated to mean shear and/or to non-stationary turbulence (developing at Ri < 0.03, Reb >∼ 106

or decaying at Ri > 0.3, Reb < 104).

6. Discussion and conclusions
Vertical heat, mass and momentum fluxes have not been directly measured in oceans and
lakes until recently, and thus the eddy viscosity and diffusivities that are central to predictive
modelling are inferred indirectly. One method relies on the assumption that the mixing efficiency
γ is a constant in the expression KTN2 = γ ε. Alternatively, a simplified scalar balance equation
KT(∂T̃/∂z)2 = χ/2 is used. The possible variability of γ was investigated in this paper based on
sonic anemometer data obtained from the stable atmospheric boundary layer. The diffusivity
KT ≡ Kf and the corresponding mixing Reynolds number Rmf (equation (1.10a) and table 1) were
evaluated using temperature flux and gradient measurements and ε via the kinetic energy spectra;
γ so obtained was designated as γ = γf. The results were compared with γ = γx, which was
evaluated using KT ≡ Kχ and the corresponding Rmχ (equation (10b)) based on the commonly
used (in physical oceanography) scalar dissipation technique (equation (1.12)). Dimensional
arguments suggest that, at high buoyancy Reynolds numbers Reb, γ is a function of Ri and Reb,
but the dependence on molecular parameters such as Pr is negligibly weak [25].

It was found that γ ≈ 0.16 is nominally a constant in the range 104 < Reb < 106, and for our
data, this corresponds to approximately 0.03 < Ri < 0.4. Both normalized diffusivities Rmf and
Rmχ coincide in this regime (figures 5 and 8), leading to Rm ∼ Ri−3/2, indicating an approximate
equivalence between γf and γx. Outside the above parameter ranges, Rm can be parametrized as
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a function of Ri using equation (4.1). For very low and high Reb and Ri, the basic assumptions
underlying KTN2 = γ ε were untenable, and should be used with circumspection. Furthermore,
the accuracy of measurements, calibration of sensors as well as the usage of Obukhov–Corrsin
spectral forms all affect the numerical value of γ .

The mixing efficiency was found to be a growing function of Ri (equation (5.5)) in a wide
range, 0.002 < Ri < 1. It was a decreasing function of Reb, according to γ ∼ Re−1/2

b (equation (5.3)),
in the range 3 × 104 < Reb < 3 × 107, which is in agreement with the DNS results of Shih et al. [25]
for 102 < Reb < 103, but at odds with Gargett’s [77] suggestion of γ ∼ Re−1

b for approximately the
same range of Reb (based on laboratory data of Itsweire et al. [78]). If turbulence is anisotropic at
smaller Reynolds numbers, as argued by Gargett [77], then it impacts the dissipation estimates
and hence mixing efficiency calculations. Detailed studies on the dependence of γ with Ri and Reb
were not possible, given the difficulty of obtaining γ versus Ri and Reb in nature when one or the
other parameter is constant (equation (2.1)). The mixing efficiency may vary from approximately
0.01 at Ri ≈ (2–3) × 10−3 to approximately 0.5–0.6 at Ri ∼ 1. Phillips [33] suggested an increase of
Ri up to a critical value Ri0, following a γ decrease at higher Ri. This trend was implemented
by Canuto et al. [36] in modelling, and was experimentally observed by Strang & Fernando [22],
Guyez et al. [79] and others. A decrease in γ at high Ri was evident (figure 9 and equation (5.5)),
but could not be confirmed using the present dataset, as in the case of stably stratified Arctic
boundary-layer data presented by Grachev et al. [80,81]. In our case, the number of high Ri data
points are only a handful, thus precluding any inferences.

At Richardson numbers close to or below a critical value Ricr ∼ 0.1–0.25 (viz. approx.
0.03 < Ri < 0.4), direct measurements of γ = γo via fluxes and gradients could be approximately
treated as a constant with a characteristic value between 0.16 and 0.2. This Ri range is most
pertinent to shear-generated stratified turbulent layers of oceans and lakes, which may explain
why γ is often observed to be close to 0.2 and treated as such [82]. In this range, the
microstructure-based estimates γx and γf are consistent with γo, showing γ ≈ 0.16. Comparison
of different observations, nonetheless, is stymied by the dependence of Ri on measurement
resolution, in particular, the separation with which the gradients are estimated. DeSilva et al. [83]
showed that when this separation is greater than the buoyancy scale, the measurement may not
be representative of local Ri, and our data were on the verge of this limit.

Our results help shed light on the differences between mixing efficiencies often encountered in
oceanographic and limnological studies. Both constant and variable values of mixing efficiency
are used, which forms the basis of closure in numerical models [84]. The present results show
that a constant mixing efficiency can be used only in a limited range of governing parameters (Ri,
Reb), and many oceanographic measurements appear to be in this range [85]; therein turbulence
is internally generated and approximately satisfies conditions of stationarity and homogeneity.
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