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Introduction

e Numerous studies have interpreted their data in terms of turbulent
kinetic energy (TKE) and associated transport and production terms
to describe the structure of turbulence within the boundary layer.

e However, these studies have been mainly over flat homogeneous
terrain. TKE budget terms remain poorly defined over complex
terrain.
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Motivation

e TKE and associated budget terms are important because they allow
us to understand the sources and sinks of turbulence within the CBL.

e It is in the interest of modelers to have observations of the
magnitude and spatial variability of the TKE budget terms for
comparisons with numerical simulation (Lothon et al., 2003).



Introduction
[e]e] o]

e Objectives of Part I:

e Determine an appropriate turbulence averaging length for complex

Introduction

Motivation

terrain airborne data-set

e Distinguish spatial variability of TKE within and above the CBL over

an isolated mountain

e |solated mountain, Granite Peak, and associated flow processes
affected the magnitude and spatially variability of TKE within and

above the CBL.
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Objectives

e In continuation of Part |, Part Il investigates the mechanisms and
sources of turbulence?

e |llustrate the relative importance and localization of various terms of
the TKE budget equation

Objectives

1) What are the dominant mechanisms of turbulence
production/destruction

2) What is the relative magnitude of the TKE budget terms
3) How do the TKE budget terms spatially vary?

e Fall 2012 MATERHORN experiment: 10Hz in-situ aircraft data,
Doppler wind Lidar, and surface meteorological observations
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Methods and Approach

Interpretation of the TKE budget equation

o TKE budget equation (Karacostas and Marwitz, 1980):
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e Focusing on the shear production, buoyancy production/destruction,
and dissipation terms, Eq. 1 becomes:
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Methods and Approach

Interpretation of the TKE budget equation

Shear Production

e Calculated from the Reynolds stress, 7 = w’u’ + w'v/, estimated
from flight leg observations

o Shear, 2Y — 9u | OV egtimated as the mean vertical gradient from
0z 0z 0z

stacked flight legs
Buoyant production - destruction

e Heat flux w6/, estimated w and 6, series from each flight leg
e Mean 0, averaged in 500 m segments

*All fluctuations were calculated with a 500 m averaging length
*Qverbars represent a 500 m spatial average
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Methods and Approach

Interpretaton of the TKE budget equation

Dissipation (¢)

e Kolmogorov turbulence spectrum, the inertial subrange lies where
the wind velocity spectrum has a -5/3 slope.
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Methods and Approach

Interpretation of the TKE budget equation

e Eddy dissipation range 25-200 m.

e Two methods for calculating w variance in inertial subrange
1) Vecenaj et al. (2012): w time series split into 500 m (100 data
points) segments. FFT within each segment. Variance in the inertial
subrange is accounted for by integrating the spectral energy between

2-.5 Hz.
. {/\5/35;()\)}
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3/2

(3)

2) Hahn (1980): Estimation of the variance at each observation
point. High pass butterworth filter. Only frequencies between 0.5-2
Hz are passed, and then squaring the terms to get variance
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Case study

Selected flight legs for investigation

o Selected Eastern Slope
and Granite Peak flight
legs during the October 10
and 17 flight periods

Flight times
100ct: 1151-1318 MDT
170ct: 1551-1700 MDT
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Case study
Ambient conditions 100ct and 170ct
e 100ct surface H = 75Wm~2; Southerly lower level flow; CBL wind

shear 2.0 x 10251
e 170ct: surface H = 90Wm—2; Northerly lower level flow; CBL wind

shear 2.0 x 6.6 x 102571
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Results

Eastern Slope 100ct

e Localized region of
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increased TKE over 5
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Results

e Localized region of
increased TKE at
upper flight levels

TKE [m %572

e Larger shear
production, 10
especially at mid 3
and upper flight legs

e Maximum buoyancy
production over
small ridge
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e Ambient flow
conforms to
underlying terrain
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Eastern Slope 170ct

e Large TKE a mid
flight level

e Isolated turbulent
patch over ridge at
upper level (2
m?s—?2)
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Results

e Positive maximum in
shear production o= s

. 15 15
over ridge S PV AN :

e Buoyancy production

is mainly negative at o 2630 m ASL .
mid and upper levels 3 [T R e A
s} 1.

e Shear production

correlates well with z
TKE
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e Some upward
motion over ridge at
lower levels

e down-welling of
faster moving flow in
wake of ridge

e Significant vertical
wind gradient at mid
and upper flight
levels

Results

Results
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Granite Peak 170ct

e Large values of TKE
over Granite Peak. A
Even at upper flight 5[
levels oo

e Distribution of TKE ™ o0
seem to be terrain st s Soso
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e Shear production
largest at lower
levels and over
Granite Peak

TKE [m %572

e TKE correlates well
with shear
production and
underlying terrain
e Buoyancy production J—
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e Upward motion at
upper level, while
weak downward
motion at lower

levels f
e Higher momentum 18

air from aloft mixed > 0[ _____ — R T
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Key findings

33

Magnitude of shear production and dissipation is 1073 m3s~3;
buoyancy 1074 m3s—3

Underlying terrain has strong influence on TKE production
mechanisms

Positive shear and buoyancy production maxima associated with
ridge top

Dissipation correlates well with TKE.



Conclusions
oe

Conclusions

e Magnitude of terms comparable to previous studies over complex
terrain (e.g. Lothon et al, 2003; Karacostas and Marwitz, 1980;
Hahn, 1980)

o Even with relatively weak (5 ms~!) lower level flow buoyancy
production was small while shear production was dominant
mechanism

e Departure from the conceptual picture of turbulence structure over
flat homogeneous terrain (e.g. Kaimal, 1976 )

e Contrary to the CBL over flat terrain, shear production is the
dominant source of turbulence even above the surface layer

e Variability of production mechanisms are direct result of
topographical variations
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