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Introduction

• Numerous studies have interpreted their data in terms of turbulent
kinetic energy (TKE) and associated transport and production terms
to describe the structure of turbulence within the boundary layer.

• However, these studies have been mainly over flat homogeneous
terrain. TKE budget terms remain poorly defined over complex
terrain.
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Introduction
Motivation

• TKE and associated budget terms are important because they allow
us to understand the sources and sinks of turbulence within the CBL.

• It is in the interest of modelers to have observations of the
magnitude and spatial variability of the TKE budget terms for
comparisons with numerical simulation (Lothon et al., 2003).
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Introduction
Motivation

• Objectives of Part I:
• Determine an appropriate turbulence averaging length for complex

terrain airborne data-set
• Distinguish spatial variability of TKE within and above the CBL over

an isolated mountain

• Isolated mountain, Granite Peak, and associated flow processes
affected the magnitude and spatially variability of TKE within and
above the CBL.
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Introduction
Objectives

• In continuation of Part I, Part II investigates the mechanisms and
sources of turbulence?

• Illustrate the relative importance and localization of various terms of
the TKE budget equation

Objectives
1) What are the dominant mechanisms of turbulence
production/destruction
2) What is the relative magnitude of the TKE budget terms
3) How do the TKE budget terms spatially vary?

• Fall 2012 MATERHORN experiment: 10Hz in-situ aircraft data,
Doppler wind Lidar, and surface meteorological observations
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Methods and Approach
Interpretation of the TKE budget equation

• TKE budget equation (Karacostas and Marwitz, 1980):

∂e

∂t
=
τ

ρ

∂U

∂z
− ∂

∂z

[
1

ρ
(w ′p′ + w ′e)

]
+ g

w ′θ′v
θ′v

− ε (1)

• Focusing on the shear production, buoyancy production/destruction,
and dissipation terms, Eq. 1 becomes:

0 =
τ

ρ

∂U

∂z
+ g

w ′θ′v
θ′v

− ε+ R (2)
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Methods and Approach
Interpretation of the TKE budget equation

Shear Production

• Calculated from the Reynolds stress, τ = w ′u′ + w ′v ′, estimated
from flight leg observations

• Shear, ∂U
∂z = ∂u

∂z + ∂v
∂z , estimated as the mean vertical gradient from

stacked flight legs

Buoyant production - destruction

• Heat flux w ′θ′v estimated w and θv series from each flight leg

• Mean θv averaged in 500 m segments

*All fluctuations were calculated with a 500 m averaging length
*Overbars represent a 500 m spatial average
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Methods and Approach
Interpretaton of the TKE budget equation

Dissipation (ε)

• Kolmogorov turbulence spectrum, the inertial subrange lies where
the wind velocity spectrum has a -5/3 slope.
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Methods and Approach
Interpretation of the TKE budget equation

• Eddy dissipation range 25-200 m.

• Two methods for calculating w variance in inertial subrange
1) Vecenaj et al. (2012): w time series split into 500 m (100 data
points) segments. FFT within each segment. Variance in the inertial
subrange is accounted for by integrating the spectral energy between
2-.5 Hz.

ε =

[
λ5/3Si (λ)

α

]3/2
(3)

2) Hahn (1980): Estimation of the variance at each observation
point. High pass butterworth filter. Only frequencies between 0.5-2
Hz are passed, and then squaring the terms to get variance

ε =
2π

Va

[
Si (λ)

α

]3/2
(4)
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Case study
Selected flight legs for investigation

• Selected Eastern Slope
and Granite Peak flight
legs during the October 10
and 17 flight periods

Flight times
10Oct: 1151-1318 MDT
17Oct: 1551-1700 MDT
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Case study
Ambient conditions 10Oct and 17Oct

• 10Oct surface H = 75Wm−2; Southerly lower level flow; CBL wind
shear 2.0 × 102s−1

• 17Oct: surface H = 90Wm−2; Northerly lower level flow; CBL wind
shear 2.0 × 6.6 × 102s−1
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Results

Eastern Slope 10Oct

• Localized region of
increased TKE over
and in the wake of
the underlying ridge.

• What are the
mechanisms?
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Results

• Localized region of
increased TKE at
upper flight levels

• Larger shear
production,
especially at mid
and upper flight legs

• Maximum buoyancy
production over
small ridge

* Shear production:
blue dotted
Buoyant
production/destruction:
black solid
Dissipation (Vecenaj,
2012): red dotted
Dissipation (Hahn,
1980: black dotted
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Results

• Ambient flow
conforms to
underlying terrain

• Upwelling on
windward side of
ridge and
down-welling in the
wake of ridge

• Increase TKE and
shear production
coincide with small
wave feature
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Results

Eastern Slope 17Oct

• Large TKE a mid
flight level

• Isolated turbulent
patch over ridge at
upper level (2
m2s−2)
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Results

• Positive maximum in
shear production
over ridge

• Buoyancy production
is mainly negative at
mid and upper levels

• Shear production
correlates well with
TKE
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Results

• Some upward
motion over ridge at
lower levels

• down-welling of
faster moving flow in
wake of ridge

• Significant vertical
wind gradient at mid
and upper flight
levels
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Results

Granite Peak 17Oct

• Large values of TKE
over Granite Peak.
Even at upper flight
levels

• Distribution of TKE
seem to be terrain
following

• Related to terrain
following CBL top
(zi )?
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Results

• Shear production
largest at lower
levels and over
Granite Peak

• TKE correlates well
with shear
production and
underlying terrain

• Buoyancy production
is relatively small
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Results

• Upward motion at
upper level, while
weak downward
motion at lower
levels

• Higher momentum
air from aloft mixed
down over ridge top

• TKE and positive
shear peak in shear
production on the
wake of the
mountain are
associated with flow
features
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Key findings

• Magnitude of shear production and dissipation is 10−3 m3s−3;
buoyancy 10−4 m3s−3

• Underlying terrain has strong influence on TKE production
mechanisms

• Positive shear and buoyancy production maxima associated with
ridge top

• Dissipation correlates well with TKE.
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Conclusions

• Magnitude of terms comparable to previous studies over complex
terrain (e.g. Lothon et al, 2003; Karacostas and Marwitz, 1980;
Hahn, 1980)

• Even with relatively weak (5 ms−1) lower level flow buoyancy
production was small while shear production was dominant
mechanism

• Departure from the conceptual picture of turbulence structure over
flat homogeneous terrain (e.g. Kaimal, 1976 )

• Contrary to the CBL over flat terrain, shear production is the
dominant source of turbulence even above the surface layer

• Variability of production mechanisms are direct result of
topographical variations
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