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Motivation Model and methods Results Conclusions

General aim: Improve Numerical Weather Prediction (NWP) over
complex terrain.

Strategies :
1 Improve NWP models => e.g., parameterizations
2 Improve initial conditions => e.g., data assimilation (DA)
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General aim: Improve Numerical Weather Prediction (NWP) over
complex terrain.
Strategies :

1 Improve NWP models => e.g., parameterizations
Idea: semi-empirical or physical models that resolve some atmospheric
processes that dynamic core can’t because they are sub-grid processes,
too complex processes or non-well know processes. Ex.: planetary
boundary layer, surface fluxes, etc.
Especially relevant for complex terrain is the sub-grid scale
orography parameterization (e.g Jimenez and Dudhia, 2012).

2 Improve initial conditions => e.g., data assimilation (DA)
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Motivation Model and methods Results Conclusions

General aim: Improve Numerical Weather Prediction (NWP) over
complex terrain.
Strategies :

1 Improve NWP models => e.g., parameterizations
2 Improve initial conditions => e.g., data assimilation (DA)

Idea: Observations are used to correct the errors in a
model-generated background estimation.

source: ECMWF
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Hypothesis: model and observations have random errors (zero mean).
In reality: model and observations have systematic errors (non-zero
mean).

Example of assimilation of unbiased observations in a biased model.

The dashed curve represents the true state evolution, observations are indicated
by the dots, and the solid curve is the product of the assimilation cycle
(Source: Dee, 2005).
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A cause of bias over complex terrain:
Representativeness errors that account for processes that are
captured by observations but the model is unable to represent.
Tautological concept. Is the error in the model or it is in the
observations? In DA, in the observations.
Especially important in the assimilation of surface observations.

Source: Jimenez and Dudhia, 2012.
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The aim of this work is to improve the assimilation of surface
observations.

We propose a method to estimate and correct
observations systematic errors.
We focus on surface in situ observations: bias is
dependent on the location and uncorrelated in space.
Methodology is inspired by satellite radiances: the
parameter bias is included in the forward operator and the
augmented space estate.
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Bias aware method

The observations bias are location dependent.

A biased observations (y) can be modeled by:

y = h(xt) + εεε′ + βββ (1)

where
xt is the true model state
εεε′ is gaussian noise with zero mean and standard deviation σ2

βββ is bias parameter
h(xt) is the forward operator that linearly interpolates xt to the
observational space considering the nearest grid-point
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Augmented state
State space augmentation z = [x,βββ]> is used for observations bias.
The statistical analysis equations are then given by:

za = zf + K(y − Hzf) (2)

K = PfH>(HPfH> + R)−1 (3)

Pa = (I − KH)Pf (4)

where:
R error covariances for observations.
Pf,a error covariances obtained through the ensemble perturbations for
the background or analysis augmented state.

Pf,a =
[

Pf,a
x Pf,a

xβ
Pf,a

xβ Pf,a
β

]
(5)

Cross-correlations are not negligible!
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Lorenz 2005 model

In Lorenz’s model (version III) the governing equation of variables Zn is:

dZn
dt = [X ,X ]K ,n + b2[Y ,Y ]1,n + c[Y ,X ]1,n − Xn − bYn + F (6)

where
the small-scale (short waves, Xn) and large scale (long waves, Yn)
are superposed to Zn

the advection terms are defined to increase the spatial variability
between grid-points
F represents the forcing term => tuned to introduce model error
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Experimental design

Lorenz’s parameters:
960 grid points.
External forcing:

F=15 => Perfect model
F=17 => Imperfect model

Synthetic observations:
240 observations spatially randomly distributed.
Modeled by Eq. 1 (y = h(xt) + εεε′ + βββ ):

ε′ normal noise with mean 0 and variance 0.5.
βββ bias parameter such as βi = 0.3 for i=1,240 observations.

Assimilation strategies:
Ensemble Kalman filter (Anderson, 2001) which was fine tuned for
this specific application.
Observations are assimilated every 6 h (50 time steps).
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Sensitivity Experiments

The sensitivity of the bias correction and estimation is tested for:
Model error. Tuning the forcing term in Lorenz model.

Experiment Bias source Estimated parm.
DFT-NOBIAS - -

DFT-BIAS βo,M -
AUG-BIAS-FC βo,M βM

AUG-BIAS-OBS βo,M βo
AUG-BIAS-FCOBS βo,M βo + βM
AUG-NOBIAS-FC βM βM
βo = observations bias and βM = model bias

DFT = Default or no augmented state
AUG = Augmented state

Ensemble size VS. number of parameters.
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Results

Performance: bias estimation

Time evolution of the estimated 0.3 bias for 240 observations with and without
model error. For the model error, time evolution of the estimated model bias.
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Results

Performance: bias correction

Temporal evolution of Prior RMSE for different parameter estimation.
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Results

Performance: bias correction

Temporal evolution of Prior RMSE for different parameter estimation.
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Results

Performance: bias correction

Temporal evolution of Prior RMSE for different parameter estimation.
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Results

Model error

Parameter estimation and RMSE for different parameter estimation, varying by
the forcing term F in the assimilation. The correct (true) F=15.
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Results

Ensemble size vs. parameters

Prior RMSE (colors) for different ensemble size and number of estimated
parameters.
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Summary and conclusions

A method to estimate and correct bias for in situ observations have been
developed.

For perfect model, the proposed approach is able to estimate and
correct observations bias.
For imperfect model, observation bias is corrected and estimated if
model bias is also estimated.
As long as the ensemble size and the number of parameters is large
enough, errors are independent of them.
There is an optimum parameter variance that minimizes the errors.

Future work: To implement this method in WRF model.
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Gracias!

Isaiah 40:4 (ESV) Every valley shall be lifted up, and every mountain and hill be
made low; the uneven ground shall become level, and the rough places a plain.

20 / 28



Motivation Model and methods Results Conclusions

Parameter variance

Prior RMSE for different parameter variances with different observations
bias (color lines) and different model bias (grey lines).
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Error covariances matrix

The matrix of error covariances are obtained through Pf,a = Zf,a(Zf,a)> where
Zf,a is the matrix of ensemble perturbations for the background or analysis
augmented state.

Pf,a =
[

Pf,a
x Pf,a

xβ
Pf,a

xβ Pf,a
β

]
(7)

Cross-correlations are not negligible!.
Scalar example with model βM and obs. bias βo :

σ2
βMβOa =

−σ2
βO f σ

2
βM f

σ2
TOT

(8a)

σ2
xaβO =

−σ2
βO f σ

2
xf

σ2
TOT

(8b)

σ2
xaβM =

−σ2
βM f σ

2
xf

σ2
TOT

(8c)

where σ2
TOT = σ2

βM f + σ2
βO f + σ2

x f + σ2
O
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Lorenz’s parameters:
N=960 (grid points), F=15 (perfect model), K=32, I=12, b=10,
c=2.5

Synthetic observations (240):
yo = h̃(xt) + εo + β

εo normal noise with mean 0 and variance 0.5
βi = 0.3 , i=1,240 or β = N(0, 0.3)

Assimilation strategies:
EAKF (Anderson, 2001)
To avoid filter divergence the spatially-varying state space is
"inflated" for Prior with initial value of 1.1, initial standard deviation
0.6 and damping 0.9 (Anderson and Anderson, 1999)
Localization: the fifth-order piecewise rational function with a 0.3
cutoff (Gaspari and Cohn, 1999)
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The RMSE for the background is employed to evaluate the bias
correction in the assimilation

RMSE =

√√√√ 1
T

T∑
t=1

1
N

N∑
i=1

(x t
i (t) − x f

i (t))2 (9)

where N(=960) number of variables.
The deterioration of the parameter estimation is evaluated through
RMSEpar, defined by:

RMSEpar =

√√√√ 1
T

T∑
t=1

1
M

M∑
j=1

(βj(t) − pj)2 (10)

where M(=240) number of parameters, pi real parameter and βi
estimated parameter
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Performance: bias parameter estimation

Temporal evolution of RMSEpar for different parameter estimation.
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Ensemble size: Imperfect model

Prior RMSE and RMSEpar for different ensemble size and number of
estimated parameters.
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Parameter variance: model bias
RMSE and RMSEpar for different parameter variances.
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General notation:

f forecast prior background, t truth, a analysis, o observation xt true
model state (dimension n)
xb background model state (dimension n)
xa analysis model state (dimension n)
y vector of observations (dimension p)
H observation operator (from dimension n to p)
B covariance matrix of the background errors ((xb − xt)) (dimension nxn)
R covariance matrix of the observations errors ((y − H[xt]) (dimension
pxp)
A covariance matrix of the background errors ((xa − xt)) (dimension nxn)
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Hypothesis

Linearized observations operator
Non-trivial error
Uncorrelated error
Linear analysis: analysis is defined by corrections of the bacground
which depend linearly on innovation
Optimal analysis: the true is as closet as possible to the true state in
an rms sense
Unbiased error
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This includes ’perfect model’ experiments (also called Observing System
Simulation Experiments - OSSEs). Essentially, the model is run forward
from some state and, at predefined times, the observation forward
operator is applied to the model state to harvest synthetic observations.
This model trajectory is known as the ’true state’. The synthetic
observations are then used in an assimilation experiment. The
assimilation performance can then be evaluated precisely because the
true state (of the model) is known.
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