MATERHORN LES Updates

Jason Simon and Tina Katopodes Chow

 Department of Civil and Environmental Engineering University of California, Berkeley
Motivation

- Different models for different scales
- Mesoscale codes: mesoscale
- LES codes: microscale
- Want a single model for all scales
- Nest from mesoscale to microscale
- Handle complex terrain (GMAST)

$\mathrm{dx}=1000 \mathrm{~m}$ \max slope $=13^{\circ}$
 z-axis scaled by 2

$d x=500 m$

\max slope $=20^{\circ}$
z-axis scaled by 2

$\mathrm{dx}=50 \mathrm{~m}$
 \max slope $=86^{\circ}$
 z-axis scaled by 2

Mesoscale Models

- Atmospheric physics
- Terrain-following coordinates
- Coarse only
- Sophisticated lateral boundaries
- Limited by resolution (computationally)

Microscale Models

- Large-eddy simulation (LES)
- Limited atmospheric physics
- Sophisticated bottom boundary
- High resolution, complex terrain
- Simple lateral boundaries
- Limited by domain size (computationally)

Single Model

- Push these two model-types together
- Mesoscale models -> finer resolution
- Terrain-following coordinates an issue
- LES models -> larger domains

WRF/IBM-WRF Framework

- WRF: Weather Research and Forecasting model
- Capable as mesoscale or LES code
- IBM-WRF (Lundquist et al. 2010, 2012)
- WRF + immersed boundary method (IBM)
- Same model; just a switch
- Nesting possible
- Excellent candidate for single model

IBM (as seen in WRF)

- Nodes just below surface are ghost nodes
- Ghost nodes reflected across the boundary (image point)
- Image point value found
- Interpolated from nearest fluid nodes
- Two interpolation options (bi/trilinear, inverse distance weighted)
- Ghost node value found
- Linear interpolation between image, boundary and ghost node

Questions for WRF/IBM-WRF

- Where should switch occur?
- Quality vs. performance tradeoff
- Quantify impact of terrain on WRF
- GMAST for now
- Generalizable in the future

The Handoff

- Must switch from WRF to IBM-WRF eventually
- When to switch? Complex question
- Resolution, steepness, aspect ratio, turbulence closure
- Want to answer generally
- Not only for GMAST

WRF Alone

- Coarse resolution
- smooth terrain
- low error
- Fine resolution
- steep terrain

- high error

WRF Alone

- Coarse resolution
- smooth terrain
- low error
- Fine resolution
- steep terrain

- high error

IBM-WRF Alone

- Very coarse resolution
- grid-scale > mountain-scale (flat plate)
- low error
- Coarse resolution
- large spacing

- high error (interpolation)
- Fine resolution
- small spacing
- low error

IBM-WRF Alone

- Very coarse resolution
- grid-scale > mountain-scale (flat plate)
- low error
- Coarse resolution
- large spacing

- high error (interpolation)
- Fine resolution
- small spacing
- low error

IBM-WRF Alone

- Very coarse resolution
- grid-scale > mountain-scale (flat plate)
- low error
- Coarse resolution
- large spacing

- high error (interpolation)
- Fine resolution
- small spacing
- low error

Together

- Switch at intersection for best results
- Want to develop general guidelines for this curve

- WRF starts blowing up near 300m resolution on 2D GMAST
- We're just getting started!

Still want slope relationship

- Focus on steepness
- Fixed resolution
- Large, constant eddy viscosities (5 values used)

- Scale GMAST (steepness knob)
- Find (illustrative) curve for yellow box

Setup

to scale

- 2D domain
- 6 hours
- $\mathrm{dx}=500 \mathrm{~m}$
- $\mathrm{nx}=100$
- $\mathrm{dt}=0.25 \mathrm{~s}$
- $\mathrm{z}_{\text {top }}=7000 \mathrm{~m}$
- $z_{\text {floor }}=1315 \mathrm{~m}$
- $d z=50 m-85 m$
- $\mathrm{u}_{\mathrm{g}}=\mathrm{u}_{0}=5 \mathrm{~m} / \mathrm{s}$
- $K_{h}=K_{v}=20,30,40,50,100 \mathrm{~m}^{2} / \mathrm{s}$
- no physics
- neutral temperature profile
- BCs
- lateral: periodic
- top: 2km Rayleigh layer (coef=0.003)
- bottom: no-slip

scale $=0.0$
slope $=0.0$

scale $=0.1$
slope $=2.3^{\circ}$

scale $=0.2$
slope $=4.6^{\circ}$

scale $=0.4$
slope $=9.2^{\circ}$

scale $=0.6$
slope $=14^{\circ}$

scale $=0.8$
slope $=18^{\circ}$

scale $=1.0$
slope $=22^{\circ}$

WRF U

West-East Position (km)

Scale $=0.4$
Maximum Difference $=0.49 \mathrm{~m} / \mathrm{s}$ Average Difference $=0.0056 \mathrm{~m} / \mathrm{s}$

Terrain-Following Coordinates

- Heavy impact on lee-side of GMAST
- Note: 2D run

Slope vs. Difference

- Very strong correlation
- Increasing K
reduces difference (as expected)

Slope vs. Difference

- Very strong correlation
- Increasing K
reduces difference (as expected)

Higher Resolutions

- 500 m chosen for WRF's sake
- Much higher resolutions possible on GMAST with IBM-WRF
- 10m shown below

Higher Dimensions

- Similar results in 3D

Summary

- Meso-to-micro scale code feasible
- Many questions still outstanding
- WRF and IBM-WRF agree well for small slopes
- Terrain-following coordaintes feel GMAST aloft
- GMAST steep enough to warrant IBM-WRF

Ongoing Work

- Further characterization
- Idealized nesting from WRF to IBM-WRF
- Add log-law bottom boundary
- IBM-WRF performance optimization

Future Work

- Real nesting from WRF to IBM-WRF
- High resolution slope flows
- Methods in the "terra incognita"

