Current Challenges of Complex
Terrain Flow Research



A complex and many-faceted topic. Some aspects:

1. Interaction of density-stratified flow with topography

2. The effect of diurnal heating and cooling

3. The process of orographic frictional and wave drag

4. The effect of different surfaces, - snow, ice, vegetation and
evaporation

Here | will address the first topic only. Some progress was
made in the 1980s & 1990s . Since then, work has
concentrated on field experiments (which tend to be site-
specific) and numerical parametrisation.

Lab experiments have contributed a lot, and | think can
contribute more.



To understand flow in complex terrain, we need to
start with flow past isolated topography.

With no stratification, steady flow over an isolated
hill looks like this:

Doubl& horseshoe vortex wake



And with weak stratification it looks like this -




Upper boundary
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1
a
= e D> e -
£ e
g —~— ~ ——

~> - T
. B = N :._

SS

And with strong Nh/U =5
stratification: -




N Two important levels: z, and z(N,) =z
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Axisymmetric obstacles
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(Snyder, Britter & Hunt 1980)



Steady flow on the
surface of an
elliptical obstacle

Nh/U = 3.45

(U/Nh=0.29)




Nh/U =2.5 In vertical plane above centreline
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Height of the front —side stagnation point (N, — node of
attachment) for the “elliptical obstacle”
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z(N,) and z, for the same “elliptical obstacle” but placed
“end on” From Baines & Smith (1993)
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In Conclusion —

Flow through complex terrain is complex, and may well
contain unpredictable variability. But we can at least
understand it (and make progress in doing so) by
considering simple situations and proceeding to more
complex ones.



Fig. 6.32. Sketches of the flow pattern on the surface and on the vertical plane
of symmetry for flow past an obstacle elongated in the downstream direction of
the form (6.1.15) with v =3/2 and b/a = 0.38, for Nh/U = 4.2, R. = 430. (a)
Plan view of flow on the surface; (b) side view. (cf. Figures 6.26, 6.27.)
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Fig. 6.29. (a) Observed height z(N,) of the stagnation point N, on the up-
stream centre-line, as a function of Nh/U. A: obstacle shape (6.1.32); O:
“polynomial hill” of Figure 6.22. A value of zero implies that no stagnation
point exits. The dashed line denotes the relation z(N,)/hy, =1— U/Nhy,.
(From Baines & Smith 1993.) (b) The observed height z, far upstream of the
lowest streamline that reaches the crest of the obstacle, in terms of Nh/U, for a
range of axisymmetric obstacle shapes. A: cone, h/A = 0.66; B: “polynomial
hill” of Figure 6.22, h/A = 0.88; O: hemisphere, h/A = 1. (From Snyder et al.
1980.)



Upper level stagnant region
Upstream stagnation formed by lee-wave overturning
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Fig. 6.28. Schematic diagram of the flow past a symmetrical obstacle where
Nh/U >> 1. Lines denote streamlines on the surface of the obstacle, and in the
central plane of symmetry.



Fig. 6.26. As for Figure 6.24, but for Nh/U =2.5. (From Hunt & Snyder
1980.)
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Fig. 6.25. As for Figure 6.24, but for Nh/U =1.0. (From Hunt & Snyder
1980.)












Fig. 6.22. (a) Side-view of the mean surface shear stress pattern and stream-
lines on the centre-plane of symmetry for homogeneous flow at large Reynolds
number with a turbulent boundary layer, over an obstacle of the form (termed
‘“polynomial hill” by Snyder et al. 1980)

. hm( 104 0.083 - 0'03)’
1+ 7 1+ (aF — r1)?/aj

where 7= (x2+ y2)12/a, hpy=a=229cm, r;=20.3cm, a; =7.6cm. N,,
N;, S,, Ss denote nodes and saddle points of attachment and separation (see
section 6.5). (b) As for (a) showing a plan view of the pattern of surface stress;
a.l. and s.1. denote lines of attachment and separation respectively. (c) An
inferred picture of the three-dimensional flow pattern of (a) and (b). An
instantaneous flow may deviate considerably from this mean, particularly in the
wake region. (From Hunt & Snyder 1980).
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Fig. 6.41. The approximate observed upstream height of the dividing stream-
surface z; or z; (i.e. the height of the highest streamline that does not pass over
the barrier), observed upstream of the obstacle as in Figure 6.40, as a function
of Nh/U and G. The figure is based on data with one obstacle shape, and
should be seen as ‘“‘schematic” until more data is available. For G > 0.5 the
surface is depicted following (6.6.11). The surface is only shown for Nih/U > 2,
with extensions indicated by dashed lines.
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Fig. 6.34. Photograph of the surface flow pattern for an obstacle of the form
(6.1.15) with v =3/2, b/a = 2 and Nh/U = 3.45, visualised with dye emanating
from small grains of potassium permanganate placed on the surface. Note the
upstream stagnation points and flow-splitting, and the downstream wake.



Fig. 6.35. The observed flow in the central plane of the obstacle of Figure 6.34,
for Nh/U =2.5. The flow is visualised by dye from a vertical rake placed
upstream in the plane of symmetry, in addition to the dye released on the
surface of the obstacle as in Figure 6.34.



Fig. 6.38. The observed horizontal flow pattern at a height z = hy,/3 for
uniformly stratified flow past a towed barrier inclined at 70° to the flow
direction. U/Nh =0.1, R. = UL/v=2990, where L is the obstacle length.
Flow visualisation is by neutrally buoyant dye released from three horizontal
rakes: one upstream, one on the surface of the obstacle and one downstream.
The dye released on the obstacle surface marks the vorticity produced there,
and horizontal Kelvin-Helmholtz billows are evident after this dyeline separ-
ates. The vortices from these separated shear layers then become concentrated
in lee-side vortices. The wake region is unsteady, with these unequal vortices
being shed alternately. (From Baines 1990: reproduced by permission of
ASCE.)



