### High Resolution Modeling for MATERHORN Field Campaign Applications to Synoptically Driven Flow



NOTRE DAME

Zachariah Silver, Reneta Dimitrova, and Tamás Zsedrovits

ATERHO



### Overview

- Adjusted WRF model setup
- Application to MATERHORN-X-2
- > Model comparisons with the Playa radiosonde data
- Model comparison to North West tower
- Applications to the smoke release / dividing streamline
- **On going work**



### WRF-ARW v.3.4.1

#### Lambert projection Utah (113°W, 40°N)

Horizontal grids D1: 32km (40x50) D2: 8km (89x97) D3: 2km (109x141) D4: 0.5km (145x169)

Vertical grid 50 eta levels 22 below 600 m first half level ~ 9 m No data assimilation

| Level | Approximate Elevation | Level | Approximate Elevation |  |
|-------|-----------------------|-------|-----------------------|--|
| 1     | 8 m                   | 14    | 143 m                 |  |
| 2     | 20 m                  | 15    | 163 m                 |  |
| 3     | 28 m                  | 16    | 187 m                 |  |
| 4     | 35 m                  | 17    | 219 m                 |  |
| 5     | 43 m                  | 18    | 259 m                 |  |
| 6     | 51 m                  | 19    | 300 m                 |  |
| 7     | 59 m                  | 20    | 361 m                 |  |
| 8     | 67 m                  | 21    | 443 m                 |  |
| 9     | 75 m                  | 22    | 526 m                 |  |
| 10    | 83 m                  | 23    | 609 m                 |  |
| 11    | 95 m                  | 24    | 693 m                 |  |
| 12    | 111 m                 | 25    | 778 m                 |  |
| 13    | 127 m                 | 26    | 906 m                 |  |



#### IB: NCEP Final Analyses (http://rda.ucar.edu/datasets/ds083.2/)

Updated land-cover and terrain elevation; 33-category National Land Cover Database (playa, white sand, and lava soil texture classes); new parameterization of soil thermal conductivity in the Noah land-surface model for silt loam and sandy loam soils (J. Massey et al., 2013, J. Appl. Met. and Climatology)



### Inner most nest



MATERHORN IV Investigator Meeting ♦ Salt Lake City, Utah ♦ Thursday October 9, 2014



# Spring Field Study Dates

| IOP - Spring  | Start (MDT)     | End (MDT)       | Start (UTC)     | End (UTC)       | Classification          | Wind speed      |
|---------------|-----------------|-----------------|-----------------|-----------------|-------------------------|-----------------|
| IOP 1         | 5/1/2013 14:00  | 5/2/2013 14:00  | 5/1/2013 20:00  | 5/2/2013 20:00  | Moderate / Quiescent    | <5 m/s – 10 m/s |
| IOP 2         | 5/4/2013 14:00  | 5/5/2013 14:00  | 5/4/2013 20:00  | 5/5/2013 20:00  | Moderate                | 5 m/s – 10 m/s  |
| IOP 3         | 5/7/2013 5:00   | 5/7/2013 17:00  | 5/7/2013 11:00  | 5/7/2013 23:00  | Moderate                | 5 m/s – 10 m/s  |
| IOP 4         | 5/11/2013 14:00 | 5/12/2013 14:00 | 5/11/2013 20:00 | 5/12/2013 20:00 | Quiescent               | <5m/s           |
| IOP 5         | 5/13/2013 12:00 | 5/14/2013 12:00 | 5/13/2013 18:00 | 5/14/2013 18:00 | Moderate / Transitional | 5 m/s – 10 m/s  |
| IOP 6         | 5/16/2013 12:00 | 5/17/2013 12:00 | 5/16/2013 18:00 | 5/17/2013 18:00 | Moderate / Transitional | 5 m/s – 10 m/s  |
| IOP 7         | 5/20/2013 17:15 | 5/21/2013 14:00 | 5/20/2013 23:15 | 5/21/2013 20:00 | Sandwich Quiescent      | <5m/s           |
| IOP 8         | 5/22/2013 14:00 | 5/23/2013 14:00 | 5/22/2013 20:00 | 5/23/2013 20:00 | Moderate                | 5 m/s – 10 m/s  |
| IOP 9         | 5/25/2013 10:00 | 5/26/2013 10:00 | 5/25/2013 16:00 | 5/26/2013 16:00 | Moderate                | 5 m/s – 10 m/s  |
| <b>IOP</b> 10 | 5/30/2013 14:00 | 5/31/2013 10:00 | 5/30/2013 20:00 | 5/31/2013 16:00 | Moderate                | 5 m/s – 10 m/s  |



#### WRF to Playa Radiosonde Comparison May 16, 2013 at 1723UTC



- Playa Radiosonde
- WRF at (24,84)

MATERHORN IV Investigator Meeting ♦ Salt Lake City, Utah ♦ Thursday October 9, 2014



### WRF to Playa Radiosonde Comparison May 17, 2013 at 1114UTC



- Playa Radiosonde
- WRF at (24,84)

MATERHORN IV Investigator Meeting ♦ Salt Lake City, Utah ♦ Thursday October 9, 2014



VITA CEDO DUE: SPES

MATERHORN IV Investigator Meeting ♦ Salt Lake City, Utah ♦ Thursday October 9, 2014



VITA CEDO DUI- SPES

MATERHORN IV Investigator Meeting ♦ Salt Lake City, Utah ♦ Thursday October 9, 2014



North West Tower at 8m Comparison with WRF data at 8.1m

→ North West at 8m → WRF at 8.1m



![](_page_10_Picture_0.jpeg)

### Expectations for the dividing streamline

![](_page_10_Figure_2.jpeg)

![](_page_11_Picture_0.jpeg)

### Froude number

Foude Number:  $F_r = \frac{U/h}{N}$ 

- U = wind speed (perpendicular)
- *h* = mountain height
- N = Brunt–Väisälä frequency

Solution Brunt–Väisälä frequency: 
$$N = \sqrt{\frac{g}{\rho_0} \frac{\partial \rho(z)}{\partial z}}$$
, in the atmosphere  $N = \sqrt{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}$ 

- g = gravity
- $\partial \theta$  = potential temperature difference
- $\theta$  = potential temperature
- $\partial z =$  change in elevation

[1] M. Muccilli, "Using the Froude Number to Improve Westerly Flow Upslope Snow Forecasts in the Green Mountains of Vermont." [Online]. Available: http://www.erh.noaa.gov/btv/mountain/profile/froude/. [Accessed: 29-Aug-2014].

![](_page_12_Picture_0.jpeg)

Froude Number at Grid Cell x 43 and y 99 05/16/2013 18:00:00 to 05/17/2013 18:00:00 UTC h equal to 540m and 26 vertical levels from 1315m to 2215m 05/16/2013 12:00 to 05/17/2013 12:00 MDT

![](_page_12_Figure_2.jpeg)

![](_page_13_Picture_0.jpeg)

N at Grid Cell x 43 and y 99 05/16/2013 18:00:00 to 05/17/2013 18:00:00 UTC h equal to 540m with 26 vertical levels from 1315m to 2215m 05/16/2013 12:00 to 05/17/2013 12:00 MDT

![](_page_13_Figure_2.jpeg)

Times that are circled: 05/17/2013 0340UTC 05/16/2013 21:40 MDT

05/17/2013 0340UTC 05/16/2013 23:20 MDT

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_18_Picture_0.jpeg)

800

**E** 800

**WRF** Streamlines 05/16/2013 23:20:00 MDT 05/17/2013 05:20:00 UTC

Streamlines originating from grid cell x = 39, y = 100

> WRF Streamlines 05/16/2013 23:20:00 MDT 05/17/2013 05:20:00 UTC

![](_page_18_Figure_4.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_20_Picture_0.jpeg)

## Results and on going work

- The model captures synoptic conditions, however the ability for the model to capture the temperature and moisture conditions still needs to be addressed
- Flow features in the lee of the mountain that are expected can be captured, but further model to observation comparisons are on going
- Additional analysis is underway to identify how the model fits within the frame work of the dividing streamline theory

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

### Acknowledgements

This research was funded by Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program.

The European Union and the State of Hungary in the framework of TÁMOP-4.2.1.B-11/2/KMR-2011-0002

This research was supported in part by the Notre Dame Center for Research Computing through [CRC resources] with special thanks to Dodi Heryadi.

Contributions to this work have been made by many other MATERHORN participants Thank you!

![](_page_21_Picture_7.jpeg)

![](_page_22_Picture_0.jpeg)