

Application of Triple Doppler Wind Lidars for the Study of Atmospheric Boundary Layer over a Mountainous Area

RDECON

Yansen Wang¹, Edward Creegan¹, Melvin Felton¹, Giap Huynh¹ Christopher Hocut^{1,2}, H. J. S. Fernando², Sebastian Hoch³, David Whiteman³

¹ U.S. Army Research Laboratory
² University of Notre Dame
³ University of Utah

Presentation to AGU 2013 Fall Meeting (12/9/2013)

ARL Participation of MATERHORN

- Participated in both MATERHORN-X field campaigns
- MATERHORN-X-1 (Fall 2012): IOPs 1 - 3 at Small Gap
 IOPs 4 - 6 at East Slope
 IOPs 7 - 9 at Big Gap
- MATERHORN-X-2 (Spring 2013): IOPs 4 - 6 at East Slope IOPs 7 - 10 at NE of Granite Mountain

* Red color IOPs: triple lidar coordinated scans with UND and UU

Approved for Public Release MATERHORN-X-1 Locations and Scanning Patterns

RHI at Small Gap

Near Ground PPI at Small Gap

VAD (PPI) at Big Gap

Approved for Public Release Triple Lidar Scans at East Slope MATERHORN-X-1

Lidars:

ARL: Leosphere Windcube 100s

UND/UU: Halo Photonics Stream Line

Setup:

- ARL lidar scanned RHI downslope towards ES2 tower
- UND and UU lidars scanned coplanar 180° RHI
- Data used for virtual tower if all three lidar beams crossed within 10 s (Calhoun et al. 2006)

Challenges:

- Due to programming limitations, UND and UU lidars were only able to continuously scan one RHI
- UND and UU lidars scanned outside of the possible beam intersection area, limiting the potential beam crossings
- Lidar synchronization issues

Approved for Public Release Triple Lidar Scans at East Slope MATERHORN-X-2

Phase 1: Stare Scans

- All three lidars starred at the ES3 20 m Sonic
- Comparison with sonic used for 3-D vector retrieval verification

Phase 2: 3-D Tower Mode

- Halo programming improved allowing Halos to scan multiple RHIs, intersecting the ARL lidar RHI
- Improved synchronization after a series of 160, 45° RHI scans, Halos were within 10 s of each other
- Created (5) 3-D VT more than 300 m in height spaced 100 m apart

Comparison of Lidar Stare Scan Data with Sonic

Comparison of the Sonic and Lidar Radial Winds in Spectral Domain

UU lidar Compared with Sonic Anemometer 10 Spectrum of ARL lidar radial velocity Spectrum of UU lidar radial velocity Spectrum of UND sonic wind component in ARL lidar beam direc. 10 Spectrum of UND sonic wind component in UU lidar beam direct. 10² 10² Spectral density (m²s⁻¹) 0 ⁰ Spectral density (m^2s^{-1}) -5/3 slope -5/3 slope 10⁰ 10 10-4 10 10⁻³ 10⁻¹ 10⁰ 10¹ 10⁻³ 10⁻² 10⁰ 10^{-2} 10⁻⁴ 10⁻¹ 10 Frequency (Hz) Frequency (Hz)

ARL lidar Compared with Sonic Anemometer

US ARMY

RDECOM

RDECOM

Examples of Triple Lidar Retrieved Virtual Towers (10/7/2012)

Time	Lat.	Lon.	Z	U	V	W
(UTC)			(m AGL)	(m/s)	(m/s)	(m/s)
11.15837	40.09638	-113.23779	57.65129	-0.22	1.21	-0.44
11.15863	40.09638	-113.23779	71.24123	-0.74	-0.64	-0.12
11.15890	40.09638	-113.23779	84.59879	-1.01	-0.34	0.03
11.15918	40.09637	-113.23779	98.46066	-1.26	-1.10	-0.75
11.15976	40.09637	-113.23779	128.68462	-1.88	-3.50	-0.52
11.16002	40.09637	-113.23779	143.01363	-1.37	-2.45	1.63
11.16058	40.09637	-113.23779	173.25742	-1.15	-3.14	-1.16
11.16085	40.09637	-113.23779	189.31435	-0.76	-2.13	0.86
11.16421	40.09607	-113.23782	16.99265	0.96	2.95	-0.17
11.16448	40.09607	-113.23782	30.61205	0.60	2.22	-0.42
11.16474	40.09607	-113.23782	43.35239	0.30	2.85	-0.56
11.16558	40.09607	-113.23782	83.66534	-1.12	-1.56	-0.01
11.16586	40.09607	-113.23782	97.08382	-1.11	-0.93	0.04
11.16641	40.09607	-113.23782	124.89384	-1.32	-1.88	0.13
11.16669	40.09607	-113.23782	139.67776	-1.58	-2.00	1.24

- A <u>substantial lidar data set</u> was obtained during the MATERHORN-X field campaigns, which contains <u>rich information about the wind field</u> <u>over mountainous terrain</u>.
- Triple lidar work with UND and UU indicated that the combined lidars have the <u>potential to directly measure the large turbulent eddies</u> without any of the assumptions required for dual lidar tower retrieval.
- There are <u>clear advantages</u> of triple lidar compared to towers: they are <u>mobile and can reach much higher altitudes</u>.
- However, to get accurate 3-D wind vector retrieval, the <u>temporal and</u> <u>spatial synchronization between lidars is imperative</u>!

Planned Further Analysis

- Compare statistics of triple Doppler wind lidar with sonics and other observations when possible.
- Compare the retrieved virtual tower data using triple and dual lidar.
- Study the accuracy of the retrieved winds under different wind conditions (i.e. strong/weak, stable/unstable).
- Determine a criteria for ideal triple lidar virtual tower retrieval (i.e. timing and angle of beam intersections, etc.)

Questions ?

Funded by Air Force Weather Agency (AFWA)