

¹University of Notre Dame, Civil and Environmental Engineering and Earth Sciences ²National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences University of Salento, Department of Biological and Environmental Sciences and Technologies

Micrometeorology Laboratory, Italy ⁴ Pazmany Peter Catholic University, Faculty of Information Technology

Abstract:

The Weather Research and Forecasting (WRF) model was used for high resolution simulation of flow around Granite Mountain Atmospheric Sciences Testbed during MATERHORN field campaigns

. The aim was to provide guidance for www.nd.edu/~dynamics/materhorn) instrument siting and map possible flow structures emanating from topographic and thermal inhomogeneities. Intriguing flow features were noted: short-lived nature of down-slope and down-valley flows due to mutual interactions between multiple nocturnal flows, drainage of cold pools between basins through sills that separate them, channelized flow expanding into nearby cold pools forming intrusions, critical (stagnation, convergence and divergence) points due to flow interactions, flow separation and wake vortices in the presence of synoptic winds, and interaction between synoptic and thermally driven flow that modifies both. The performance of the model was evaluated by comparing model predictions with observations from the two MATERHORN field campaigns (October 2012 and May 2013).

This research was funded by: Office of Naval Research Grant # N00014-11-1-0709. with additional support from: The European Union and the State of Hungary in the framework of TÁMOP-4.2.1.B-11/2/KMR-2011-0002

Mountain Terrain Atmospheric Modeling and Observations Program

Weather Research and Forecasting Model (WRF) http://www.mmm.ucar.edu/wrf/users/ The area of interest

AGU Fall Meeting San Francisco, California December 9 – 13, 2013

High Resolution WRF Modeling for MATERHORN Field Campaign Z. Silver^{*1}, R. Dimitrova^{1,2}, H.J.S. Fernando¹, L. Leo¹, S. Di Sabatino^{1,3}, T. Zsedrovits^{1,4}, C. Hocut¹

Vertical tethered balloon profile comparison at 3:30 AM (MDT)

Two field campaigns were conducted each consisting of 10 Intense Observations Periods (IOP). WRF model simulations have been performed for all of the IOPs

	IOP	- Fall	Start (I	MDT)	End	(MDT)	Star	t (UTC)	En	d (UTC)	Classi	fication	Wind	lspee
		IOP0	9/25/2012	2 14:00	9/26/20	12 14:00	9/25/20	012 20:00	9/26/20)12 20:00	Qu	uiescent		<5m/
		IOP1	9/28/2012	2 14:00	9/29/20	12 14:00	9/28/20	012 20:00	9/29/20)12 20:00	Qı	uiescent		<5m/
		IOP2	10/1/2012	2 14:00	10/2/20	12 14:00	10/1/20	012 20:00	10/1/20)12 20:00	Qu	uiescent		<5m/
		IOP3	10/3/201	12 2:00	10/4/20	012 2:00	10/3/2	2012 8:00	10/4/2	2012 8:00	Tran	sitional		fron
		IOP4	10/6/2012	2 14:00	10/7/20	12 14:00	10/6/20	012 20:00	10/7/20	012 20:00	Μ	loderate	5 m/s - 1	10 m/s
		IOP5	10/9/2012	2 14:00	10/10/20	12 14:00	10/9/20	012 20:00	10/10/20	012 20:00	Moderate / Qu	uiescent		fron
		IOP6	10/14/201	12 2:00	10/15/20	012 2:00	10/14/2	2012 8:00	10/15/2	2012 8:00	Qu	uiescent		<5m/
		IOP7	10/17/2012	2 12:00	10/17/202	12 20:00	10/17/2	012 18:00	10/18/2	2012 2:00	Moderate / Qu	uiescent	5 m/s - 1	10 m/
		IOP8	10/18/201	12 5:00	10/19/20	12 12:00	10/18/2	012 11:00	10/19/20	012 18:00	Qu	uiescent		<5m/
		IOP9	10/20/2012	2 14:00	10/21/20	12 14:00	10/20/20	012 20:00	10/21/20)12 20:00	M	loderate	5 m/s - 1	10 m/s
	a i b	2						`						
IOP	- Spring	Sta	$\operatorname{art}(\mathbf{MDT})$		End (MDT)	= /	Start (UTC		End (UTC		Classification		nd speed	
	IOPI	5/1/2	2013 14:00	5/	2/2013 14:00	5/	1/2013 20:0	0 5/2	2/2013 20:00 5/2012 20 00	J Moder	ate / Quiescent	c <5 m/s	– 10 m/s	
	IOP2	5/4/.	2013 14:00	5/	5/2013 14:00	5/4	4/2013 20:0	0 5/3	5/201320:00		Moderate	5 m/s	-10 m/s	
		5//,	/ 2013 5:00	5/ E/1	//2013 1/:00	5/ 5 /1	//2013 11:0 1/2012 20.0	U 5/	//2013/23:00 2/2012/20:00		Moderate	5 m/s	-10 m/s	
	IOP4	5/11/.	2013 14:00	5/1	.2/2013 14:00 1/2013 12:00	5/1	1/2015 20:00 2/2012 19:00	$\begin{array}{c} 0 \\ 5/1 \\ 0 \\ 5/1 \end{array}$	2/2013 20:00 1/2012 19.00	U Modorat	Quiescent	E m /a	< 5 m/s	
		5/13/	2013 12:00	5/1	7/2013 12:00	5/1	5/2013 10:00 6/2012 19:00	$0 \frac{5}{1}$	7/2013 10:00	Moderat	to / Transitional	5 m/s	= 10 m/s	
		5/10/	2013 12:00	5/1	1/2013 12:00	5/1	0/2013 10:00	5 - 5/2	1/2013 10:00		byich Quiescent	5 111/8	$\sim 10 \text{ m/s}$	
		5/20/	2013 17:13	5/2	2 / 2013 14:00	5/2 5/2	0/201323:1. 2/201320.0	$\begin{array}{ccc} 5 & 5/2 \\ 0 & 5/2 \end{array}$	2/2013 20:00 2/2012 20:00	n Sand	Moderate	5 5 m/s	-10 m/s	
		5/25/	2013 14.00	5/2	6/2013 14.00	5/2	2/2013 20.00 5/2013 16.00	$0 \frac{5}{2}$	5/201320.00 6/201316.00		Moderate	5 m/s	-10 m/s	
		<u> </u>	2013 10.00 2013 14.00	5/2 5/3	1/2013 10.00	5/2	0/2013 10.0	0 - 5/2	1/2013 16.00	0	Moderate	5 m/s	-10 m/s	
	-10110		2013 17.00		2013-10.00		07201520.0	575	7 2013 10.00		Modelate	<u> </u>	10 111/ 5	

Modeling Domains: Lambert projection Utah (113°W, 40°N); Two-way nested (64, 16, 4, 1km); Vertical levels: 48

Wind vectors and temperature at 2 meters for the 1 km domain at 5:00 AM (MDT)

White vectors and contours: WRF

Green vectors: Surface Atmospheric Measurement Systems (SAMS)

> MiniSAMS

Portable Weather Instrumentation Data Systems (PWIDs)

for the Sagebrush site located in the valley

erature Vertical Profile Comparison for Sage Brush Tethered Balloon Site to WRF Output 12-May-2013 03:30:00 MDT 48lev YSU Balloon Ascent Time: 09:32 to 09:48 UT

vigorous transient episodes, which can play a significant role in determining the flow patterns

This research was supported in part by the Notre Dame Center for Research Computing through [CRC resources].

	Quiescent							Moderate						
	MB	NMB	ME	NME	RMSE	IA	MB	NMB	ME	NME	RMSE	IA		
48 levels	1.47	10.36	3.26	22.92	6.54	0.82	-0.75	-3.78	1.84	9.28	6.70	0.73		
35 levels	2.23	15.68	4.28	30.15	7.31	0.76	-1.38	-6.96	2.34	11.82	6.89	0.71		
48 levels	-0.21	-8.46	1.29	51.28	1.65	0.68	0.37	8.31	1.62	36.68	2.04	0.80		
35 levels	0.58	22.97	1.69	67.11	2.16	0.61	0.12	2.80	1.82	41.23	2.25	0.79		
48 levels	-4.31	-2.55	74.85	44.23	110.27	0.56	-1.07	-0.48	73.07	32.70	115.09	0.58		
35 levels	-13.18	-7.79	76.40	45.15	112.64	0.52	-8.48	-3.80	77.46	34.66	118.78	0.58		

Computational Resources