UTAH – 17 AUGUST 2012

Lessons from Previous Studies

Silvana Di Sabatino ^(1, 2) and Laura Sandra Leo ⁽¹⁾

MATERHORN -)

 ⁽¹⁾ Environmental Fluid Dynamics Laboratories, Civil Engineering & Geological Sciences, University of Notre Dame, Notre Dame, IN, USA
 ⁽²⁾ Micrometeorology Lab, University of Salento, Via Monteroni, Lecce, Italy

In Preparation of Materhorn Fall experiment...

....What has been going on at ND during this year ?

(1) <u>Research Advancements</u> (MATERHORN-X)

based on archived data from previous field experiments in complex terrain:

- TRANSFLEX
- **BIFERNO**
- HERMOSA
- VTMX

(2) Planning of the fall field campaign

- Operational Plan (in collaboration with the other *MATERHORN – X* groups)

- Test/ calibration/ checking of instruments (in laboratory and open field e.g. White Field experiments)

Findings from previous field studies

➢ Flow transition in complex terrain – results from Phoenix experiments (TRANSFLEX, 2006)

Flow circulation under low synoptic in a coastal urban valley (Biferno, Italy 2009)

Flow and turbulence parameterization - the role of scales in BL flows (Hermosa Study- Phoenix, 2009)

Mixing efficiency in atmospheric flows (VTMX – Salt Lake City, 2000)

➤ Turbulence collapse – transition from convective to stable & neutral: the role of air moisture (White Field, ND, 2011)

Lessons from Previous Studies and MATERHORN - X

TRANSFLEX EXPERIMENT: Focus on Evening Transition

Two scenarios: 1) formation of a transitional front 2) change in buoyancy of a cooled slab of air near the ground

Fernando, H.J.S., Verhoef, B., Di Sabatino, S., Leo, L.S., Park, S. "The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Boundary-Layer Meteorology. Under Review

Annual Review Meeting II – SLC, AUGUST, 17- 2012

Fernando, H.J.S., Verhoef, B., Di Sabatino, S., Leo, L.S., Park, S. "The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Boundary-Layer Meteorology. Under Review

FLOW CIRCULATION IN COASTAL VALLEY: THE BIFERNO PROJECT

Leo, L.S., Fernando, H.J.S., Di Sabatino (2012)- Flow in Complex Terrain with Coastal and Urban Influence. Journal of Applied Meteorology and Climate. Under review.

Annual Review Meeting II – SLC, AUGUST, 17- 2012

Leo, L.S., Fernando, H.J.S., Di Sabatino (2012)- Flow in Complex Terrain with Coastal and Urban Influence. Journal of Applied Meteorology and Climate. Under review.

HERMOSA Study: Turbulence scaling in complex terrain

Lessons from Previous Studies and MATERHORN - X

Dallman, A., Di Sabatino, S and Fernando, H.J.S. Flow and Turbulence in an Industrial / Suburban Roughness Canopy. Submitted to Environmental Fluid Mechanics.

Lessons from Previous Studies and MATERHORN - X

Roughness Canopy. Submitted to Environmental Fluid Mechanics.

Planning of the fall field campaign

OPERATIONAL PLAN

- ND experimental contribution

- Site selection orographic features, terrain according to objectives – type of instrumentation and time resolution requirements
- Components: flux measurements (5 towers)
- Slope (fluxes and full energy balance) and gap flows; finescale turbulence measurements; lidar, ceilometer, sodar/rass, balloon
- New technologies from MATERHORN -T advancements (Combo system, instrumented UAV, FASS, RF CROSSHAIR)

ND experimental contribution

Three heavily instrumented EFS:

EFS-Slope

EFS-Playa

EFS-Flats

ND experimental contribution

East Slope of Granite Mountain

Lessons from Previous Studies and MATERHORN - X

Nighttime (downslope regime)

- Evening transition mechanism (cold front/ slab formation)
- Downslope flow evolution
- Thermal stratification
- Daylight (upslope regime)
- Morning transition mechanism
- Anabatic flow regime
- Flow separation

EAST GRANITE SITE

MATERHORN – T component MATERHORN – X component

MATERHORN – P component

EAST GRANITE SITE – ES2 -

Fluxes of Momentum and Sensible Heat and Kolmogorov scale of TKE dissipation

- 7 levels of turbulence (in combination with fast thermocouples and slow sensors of RH and T)
- 13 fast thermocouples
 - **3-D Hot Film Combo System**
- 2-X Hot Film Combo System
- Moisture measurements using FASS
 (Fog Aerosol Sampling System)

MATERHORN – T component

•

Annual Review Meeting II – SLC, AUGUST, 17- 2012

EAST GRANITE SITE – ES3 -

- eddy covariance system
- 5 levels of turbulence (in combination with fast thermocouples (type K) and slow sensors of RH and T)
- 4-component radiation balance measurement
- 13 fast thermocouples
- Soil temperature, soil heat flux, and soil water content measurements

Annual Review Meeting II – SLC, AUGUST, 17- 2012

POTRE DAME

EAST GRANITE SITE

Instrumented UAV

Flamingo F -18 Turbulence, wind velocity, temperature, atmospheric pressure and humidity

Doppler Lidar

Halo Photonics Doppler lidar 1.5 mm pulsed infrared laser to obtain radial velocities and backscatter magnitude (max range of 10 km)

Flow Visualization

FLIR Systems ThermoCAM SC4000 IR camera (sensitivity <0.02 °K) will be used to investigate spatial and temporal response of surface temperatures along the East slope of Granite Peak.

Smoke visualization system ZV40,000 (rapid sustained visual obscuration at a rate of 18 m³/s) A high Wattage 1W laser will illuminate a strip of the mountain Video Camera for recording.

ND experimental contribution

WEST GRANITE SITE

- interactions of synoptic and slope flows
- contrasting development of thermal circulations on the east and west slopes of Granite Peak during transition periods

Vaisala Ceilometer CL31

Scintec MFAS with RASS

Annual Review Meeting II – SLC, AUGUST, 17- 2012

NOTRE DAME

×

Lessons from Previous Studies and MATERHORN

ND experimental contribution

- 5 levels of turbulence (in combination with fast thermocouples and slow sensors of RH and T)
- 4-component radiation balance measurement
- 13 fast thermocouples
- Soil temperature, soil heat flux, and soil water content measurements

Annual Review Meeting II – SLC, AUGUST, 17- 2012

ND experimental contribution

Gap flows

SMALL GAP SITE

Annual Review Meeting II – SLC, AUGUST, 17- 2012

ND experimental contribution

- vertical BL structure
- drainage flow
- Cold pool formation

ND experimental contribution

RF CROSSHAIR Remote Soil Moisture Sensing System (3 frequency bands: 470 MHz, 915 MHz, 2.437 GHz)

- Spatial Averaged Measurements of Soil Moisture Content
 - Analysis of temporal changes (over short and long term) in soil moisture content over a representative area

Planning of the fall field campaign

<u>Test /calibration/ checking of instruments</u> (A brief summary)

Pre-Materhorn Experiment (Whitefield campaign)
 Focus on the evening transition and TKE decay mechanism (Leo, L.S., Di Sabatino, S., Fernando

 Flow Transition under very moist conditions –
 In preparation for BLM or EFM journal)

- Datalogger Programming
- Calibration of ND instruments

(thanks to Patrick Conry, Orson Hyde, Sahan Fernando and Kelly McEnerney)

Annual Review Meeting II – SLC, AUGUST, 17- 2012

Lidar

Planning of the fall field campaign

Pre-Materhorn Experiment

Planning of the fall field campaign

Pre-Materhorn Experiment

Date	Hour	Evening Transition	Stabilization time
<i>30 July 2011</i> (26 July)	$19.00 - 20.00$ $(19.52 - 20.03)$ $20.20 - 20.30$ $(20.54 - 21.13)$ $20.55 - 21.05$ $(21.15 - 21.30)$ $23.05 - \dots$ $(22.45 - \dots)$	SLOW decay of TKE Flow becomes weakly stable below the canopy layer, Mixed layer above	~ 1 hour Profiles slowly evolve towards a decoupling with the atmosphere above (with inflection point at canopy height)
<i>31 July 2011</i> (27 July)	19.00 – 19.30 19.43 – 19.53	FASTER decay of TKE Flow becomes weakly stable below canopy layer <i>Unsaturated conditions</i> Flow becomes stable	 ~ less than 1 hour Profile slowly evolve towards a decoupling with the atmosphere above No clear decoupling but rather homogeneous stable layer
Leo, L.S., Di Sabatino, S., Fernando – <i>Flow Transition under very</i> moist conditions – In preparation for BLM or EFM journal)			

