Observation and modeling of boundary-layer separation and rotor events

Stefano Serafin¹, Lukas Strauss¹ and Vanda Grubišić^{1,2}

¹ Department of Meteorology and Geophysics, University of Vienna, Austria ² Earth Observing Laboratory, NCAR, Boulder, USA

Summary

- Wave-induced boundary-layer separation.
- Medicine Bow Range, Wyoming.
- Granite Peak, Utah.

Wave-induced BLS

Wave-induced BLS /1

An adverse pressure gradient force acting on boundary-layer flow may cause boundarylayer separation (BLS).

Anderson (1995)

BLS can be wave-induced...

Wave-induced BLS /2

A case study: Medicine Bow Range

~21:29 UTC

~22:05 UTC

17.08.2012

Dividing a flight leg into parts "upstream" (quiescent) and "downstream" (turbulent) of the mountain

EDR along flight legs

Procedure of applying inertial-dissipation technique:

Cut time series into 10 s windows (Blackman), sliding interval 5 s

• Compute spectrum and estimate EDR for each window

EDR estimation from spectra of 15 s segments, sliding by 7.5 s

17.08.2012

EDR estimation from spectra of 15 s segments, sliding by 7.5 s

WRF modelling

WRF modelling

- Phase I:
 - Nonlinear flow regime, wave breaking.
- Phase II:
 - Decreasing nonlinearity upstream, transition.
- Phase III:
 - Neutral layer aloft, trapped lee waves.

Outlook: Granite Peak

Comparison to Medicine Bow

Granite Peak

Theory

Potentially, all three separation regimes may be observed over Granite Peak, depending on the upstream conditions.

Theory

• Granite Peak is an irregularly shaped 3D obstacle!

CM1 modelling

CM1 modelling

17.08.2012

Conclusions

Conclusions

- Expertise in the Vienna Theoretical Meteorology group:
 - Estimation of turbulence parameters from onboard *in situ* and remote sensing measurements.
 - Mesoscale and large-eddy simulations.
- Research focus:
 - BLS, interaction between waves and the atmospheric boundary layer.
 - stable boundary layers.
 - thermally driven flows.

Thank you for your attention

The participation of IMGW staff to the MATERHORN project will be funded from October 2012 by the Austrian Science Funds, FWF, through the project P 24726 – N27: STABLEST – Stable Boundary Layer Separation and Turbulence.

Medicine Bow observations

Several flight legs were flown on January 26th 2006, including a ramp sounding and 3 crossmountain stretches.

Medicine Bow model verification /1

Cross-mountain

Comparison of model output in a time window ± 1.5 h around the actual flight time

Medicine Bow model verification /2

Medicine Bow model verification /3

17.08.2012

Two factors contribute in explaining the rapid motion of the separation line: (1) Decreasing non-linearity in the inflow conditions;

Two factors contribute in explaining the rapid motion of the separation line: (2) Attendant changes in the buoyancy perturbation

Sensitivity to BL parameterization

Mellor-Yamada-Janjić (above) vs. Bougeault-Lacarrère (below). The latter creates higher TKE and is therefore much more diffusive. Reverse flow in the rotor region vanishes.

Large-eddy simulation /1

CM1 model

- ➢ 3D domain, linear (2D) mountain ridge.
- > Domain: 680 (x) \times 3 (y) \times 12 (z) km.
- > Grid spacing: $50 \times 50 \times 20$ m.
- Grid stretching towards boundaries.
- Boundary conditions:

Rayleigh damping layer at top, beyond 7000 m. Rayleigh damping layer and open conditions at upand downstream boundaries.

Periodic conditions at lateral boundaries.

- Deardorff (1980) SGS turbulence closure.
- Bottom friction parameterized with bulk drag formulas.
- Initialization with a sounding derived from observations (ramp sounding). Constant inflow.

Large-eddy simulation /2

Large-eddy simulation /3

15.08.2012

CM1 modelling @ DPG

