

ARL Lidar in MATERHORN-X

Yansen Wang

Atmospheric Dynamic Branch U.S. Army Research Laboratory

Leosphere Windcube 100STM

Performances	
Maximal range	8000m
Wind measurement range (on aerosol -	100 to 3500m
within boundary layer)	
Accumulation Time	1 s – 1,5s – 2s
Data output frequency	1 Hz
Resolution range	50m -100m - 200m
Probed length	37.5m – 75m – 150 m
Minimum distance between 2 probed lengths	1m (manual configuration only)
Azimuth scan range	0°à 360°
Elevation scan range	-10°à 190°
Speed Accuracy	0.5m/s
Speed range	±30m/s
Laser	
Wavelength	1,54 μm
Eye safety	IEC/EN 60825-1 compliant / ANSI-Z136.1-
	2007 compliant
Environmental	
Temperature Range	-15 to +40℃
Operating humidity	IP65 (streaming)
Rain protection	Wiper (available in summer 2012)
Compacity	Portable (4 people)
Dimensions	
Weight	170 kg
Dimensions	L1570 x 1680 x h640 mm for body and h=1000
	mm with the scanner head
Power Supply Specifications	
Electric Power Supply	27 VDC
Power consumption	500W to 2000W
Data	
Format	ASCII/Binary
Transfer	Ethernet/USB

US ARMY

From Leosphere Manual

Approved for Public Release; Distribution Unlimited Data Samples from Leopshere Windcube 100S

us army RDECOM

ARL

A PPI Scan (elev. Angle=60⁰)

A RHI Scan (Azmuth Angle=90⁰)

Approved for Public Release; Distribution Unlimited

Lidar Aeral Coverages (Assumes 3km radius)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ARL

Mean Wind

- 1. Horizontal wind field via PPI scans
- 2. Virtual towers (vertical profiles) via RHI scans

Large Scale Turbulence Structures

(related to range gate resolutions ~50m)

Data Assimilations with Numerical Models

Approved for Public Release; Distribution Unlimited Other ARL interests from MATERHORN

• Improvement of diagnostic wind model for complex terrains.

• Large scale turbulence structures over complex terrain.

 Validation of a newly developed microscale boundary layer environment model.