Spatial Variability of Turbulent Kinetic Energy around an Isolated Mountain

ERHORN

Berkelev

Mark Sghiatti, Stephan De Wekker, Sandip Pal, and Dave Emmitt

Department of Environmental Sciences

University of Virginia

MATERHORN Investigator's Meeting

STAN COMPANY OF SHARE THE PARTY OF SHARE SHARE

October 9-10, 2014

Department of Environmental Sciences

Introduction

Turbulent processes important for:

- Pollution dispersion
- Convection
- Cloud formation
- Atmospheric turbulence
- •Number of previous studies on boundary layer (BL) turbulence in flat homogeneous terrain
 - BL turbulence is generally well understood in these areas
- Less research on BL turbulence in complex terrain
 - Not well understood

Introduction

The spatial variability of turbulence in complex terrain influenced by:

- Horizontal surface heterogeneities
- Terrain air flow modification
- Thermally driven wind systems

•Understanding and documenting turbulence over complex terrain can:

- Provide verification for models
- Improve the parameterization and representation of turbulence processes in numerical models

Goal

Characterize and document the spatial variability and structure of boundary layer turbulence in complex terrain

Introduction

Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program

• Fall 2012 MATERHORN-X : airborne *In situ* meteorological measurements over an isolated Granite Peak, Utah and surrounding area

MATERHORN-X data set

• Provides an opportunity to investigate the influence of complex terrain on **BL** turbulence

MATERHORN-X: Twin Otter Flight Summary

Twin Otter airborne observations are from

- Six Navy Twin Otter flights flown between 5-18 Oct. 2012
- Participated in 4 IOPs
- Missions lasted ~ 4 hours
- Flight legs 1500-2500 m ASL and 10-20 km long
- Co-funded by ONR and ARO

Observations Include:

- In situ 10 Hz temp, humidity, wind components, wind direction
- Twin Otter Doppler Wind Lidar (TODWL) wind profiles

Question

Processes over mountainous terrain are known to influence the spatial variability of turbulence

What is the spatial variability of turbulence in terms of TKE around Granite Peak?

Question

Why TKE?

- •Many models are based on TKE similarity functions formulated over idealized topography (Rotach, 1995).
- •Nature of TKE over highly complex terrain cannot be assumed to be the same as that over flat homogeneous terrain (Weigel et al., 2006).
- •Spatial variability and dominant scales that contribute to the production of TKE over mountainous terrain remains greatly unknown

Objectives

Utilize MATERHORN aircraft observations to investigate:

- **1.** Turbulence averaging length over Granite Peak
- **2.** Spatial variability of TKE
- **3.** Resolve scales of turbulence

Approach and Methods

Approach and Methods: *Selected IOPs*

IOP Number	Date	Time of Twin Otter Fligths [MDT]	Prevailing Synoptic Conditions (700 mb)	Туре	Flight Legs	RS	Last Precip
IOP 4	6-Oct	1415 -1710 MDT	NW flow 7-10 m/s	Quiescent	SG, PYA, GP, GRNT Mtn	SG, PYA	25-Sep
IOP 4	7-Oct	900-1245 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
IOP 5	9-Oct	1440-1830 MDT	SW flow 4-5 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
IOP 5	10-Oct	845 -1250 MDT	SW flow 5-7 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
IOP 6	14-Oct	800-1200 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	12-Oct
IOP 6	14-Oct	1415-1700 MDT	NW flow 2-3 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	

Approach and Methods: Selected *IOPs*

	IOP Number	Date	Time of Twin Otter Fligths [MDT]	Prevailing Synoptic Conditions (700 mb)	Туре	Flight Legs	RS	Last Precip
	IOP 4	6-Oct	1415 -1710 MDT	NW flow 7-10 m/s	Quiescent	SG, PYA, GP, GRNT Mtn	SG, PYA	25-Sep
	IOP 4	7-Oct	900-1245 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
Afternoon Mission	IOP 5	9-Oct	1440-1830 MDT	SW flow 4-5 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
Morning Mission	IOP 5	10-Oct	845 -1250 MDT	SW flow 4-6 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
	IOP 6	14-Oct	800-1200 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	12-Oct
	IOP 6	14-Oct	1415-1700 MDT	NW flow 2-3 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	

Approach and Methods: *Selected IOPs*

	IOP Number	Date	Time of Twin Otter Fligths [MDT]	Prevailing Synoptic Conditions (700 mb)	Туре	Flight Legs	RS	Last Precip
	IOP 4	6-Oct	1415 -1710 MDT	NW flow 7-10 m/s	Quiescent	SG, PYA, GP, GRNT Mtn	SG, PYA	25-Sep
	IOP 4	7-Oct	900-1245 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
Weak mtn. top flow	IOP 5	9-Oct	1440-1830 MDT	SW flow 4-5 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
Moderate Mtn. top	IOP 5	10-Oct	845 -1250 MDT	SW flow 4-6 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
flow	IOP 6	14-Oct	800-1200 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	12-Oct
	IOP 6	14-Oct	1415-1700 MDT	NW flow 2-3 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	

Approach and Methods: *Selected Flight legs*

Focus will be on turbulence analysis over:

Sagebrush

UNIVERSITY VIRGINIA

Approach and Methods: *Selected Flight legs*

Focus will be on turbulence analysis over:

- Sagebrush
- Eastern Slope

UNIVERSITY VIRGINIA

Approach and Methods: Averaging Length

Approach and Methods: Averaging Length

- •Most likely averaging length from the power spectra is given by
 - Gap seen at approximately 900 m and 1000 m
- Inhomogeneous and non-stationary nature of PBL turbulence
 - Makes defining the spectral gap unclear
- To alleviate this problem dilemma
 - Use the moving average method

Approach and Methods: Averaging Length

Moving average used to calculate perturbations from aircraft data

Work still being done on determining averaging length

- For this study we us 1.5 km from sensitivity tests and past research
 - Vickers and Mahrt (1997)
 - Vecenaj et al. (2012)
 - Foken et.al. (2005)

•TKE was calculated from perturbations of the wind components (w', u', v')

$$\overline{e} = \frac{1}{2} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)$$

Case Study: Oct. 9 Afternoon

- Prevailing synoptic flow
 - W-SW 4-6 ms⁻¹
 - Transitional period

Sagebrush 1720 m ASL

Department of Environmental Sciences

Sagebrush 1720 m ASL

Case Study: Oct. 10 Morning

Department of Environmental Sciences

- Prevailing synoptic flow
 - W-SW 6-9 ms⁻¹
 - Transitional period

Sagebrush 1720 m ASL

Sagebrush 1720 m ASL

Spectral Analysis

Dotted lines represent Inertial subrange

Spectral Analysis

Dotted lines represent Inertial subrange

Discussion and Conclusion

Determination of averaging length is not straight forward

• Moving average method works well for characterizing the spatial variability of TKE

•Stronger lower level and mountain top level flow on Oct. 10 than Oct. 9

- Relatively smaller values of TKE during weaker mountain top flow on Oct. 09
- TKE varies as function of distance away from Granite Peak (Eastern Slope => Sagebrush)
- Spectral analysis
 - Resolve scales of turbulence

•What are the physical processes responsible for influencing the spatial variability of TKE?

Future Work

 Investigate the physical mechanisms that are contributing to the spatial variability of turbulence

- TKE structure
- Contribution of shear and buoyancy mechanisms
- •Continue spectral analysis on all three wind velocity components
- Investigate flight legs from other IOPs

Acknowledgments

Advisor and collaborators

Stephan F.J. De Wekker, Sandip Pal, and Dave Emmitt

Funding Agencies and Support

Office of Naval Research and NSF

Environmental Sciences group at the Army Research Office

MATERHORN community, De Wekker lab group, and University of Virginia Environmental Sciences Department

Air Flow

Air flow

121010 Lower Level winds ~ 1900 m ASL in situ winds 121010 Lower Level winds ~ 1620 m ASL in situ winds

Approach and Methods: Spatial Variability of TKE

The spatial variability of TKE was evaluated as follows:

•Moving averaging method for data series and calculate respective perturbations of meteorological variables

•TKE profiles from aircraft are compared across flight days

MATERHORN-X: Twin Otter Flight Summary

IOP Number	Date	Time of Twin Otter Fligths [MDT]	Prevailing Synoptic Conditions (700 mb)	Туре	Flight Legs	RS	Last Precip
IOP 4	6-Oct	1415 -1710 MDT	NW flow 7-10 m/s	Quiescent	SG, PYA, GP, GRNT Mtn	SG, PYA	25-Sep
IOP 4	7-Oct	900-1245 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
IOP 5	9-Oct	1440-1830 MDT	SW flow 4-5 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
IOP 5	10-Oct	845 -1250 MDT	SW flow 4-6 m/s	Quiescent/ Transitional	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	
IOP 6	14-Oct	800-1200 MDT	NW flow 5-7 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	12-Oct
IOP 6	14-Oct	1415-1700 MDT	NW flow 2-3 m/s	Quiescent	SG, PYA, GP, ESLP, GRNT Mtn	SG, PYA	

Approach and Methods

Pick selected IOPs with similar conditions

- Mean flow
- Synoptic conditions

Select TO flight legs in regions around Granite Peak

 Areas hypothesized that flow-terrain interactions will produce spatial variability in turbulent features

Investigate TO in situ observations of wind velocity components (w, u, and v)

- Determine prominent features in turbulent wind field
- Develop profiles turbulent kinetic energy (TKE)
- Determine prominent features in TKE

10.10

[s/m] U

10.10

7.5 6.0 4.5 (s/ш) 0 3.0

1.5

40.06

40.08

Time (MDT): 11.242083 - 11.339975 Alt: 1755.99m ASL

40.14

40.12

40.10

Mean U:

40.20

40.22

40.18

40.16

10.10

Twin Otter Flight and Site Overview

Aircraft flew over five key areas:

- Playa
- Granite Peak
- Sagebrush
- Gap (Small/Big)
- Eastern Slope

Approach and Methods: Analysis

Introduction

Orlanski, 1975

Understanding of how turbulence is affected by interactions with complex terrain has been a challenge for boundary layer meteorology, and more work is needed in this research area

Rotach and Zardini, 2007

There is a virtual absence of knowledge concerning the turbulence structure in the boundary layer over complex terrain

