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Topics L\

NCAR

Data assimilation (ensemble)

Ensemble sensitivities for observing
strategies)

Model error estimation
Parameter estimation
Observation bias estimation
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NCAR

Ensemble Sensitivities

Network design for fine-scale near-surface
forecasts in complex terrain



Ensemble sensitivity analysis (ESA) \NCAR

4 A
How does the change in a set of initial state aJ,

variables x, change a forecast metric J? I
\- y

 |dentify dynamically relevant covariance structures in
space and time

* Propose observing strategies for mesoscale, short-range
forecasts in complex terrain

« Sensitivity scales (time and space) to infer predictability
scales

* Predictability of specific phenomena

* Open issues:
— Sampling error
— Linearity assumptions in complex terrain
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Ensemble Sensitivity Background \NCAR

* Ancell and Hakim (2007) showed
theoretical equivalence between
adjoint and ensemble sensitivity for
linear perturbations and Gaussian
statistics

* Relies on linearization about an
ensemble-mean trajectory

» Rigorous application has so far
been limited to large-scale (smooth)
and integrated processes where

strong linear relationships are more
likely
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) Sensitivity of 24-h sea-level pressure
An optimal ensemble data (SLP) over western Washington to SLP

assimilation system provides | initial conditions, and ensemble-mean
] Hakim 2 :
an approprlate Sample SLP (from Torn and Hakim 2008)
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Moisture sensitivity to temperature \NCAR

aznlf SIYIEI 1) %Je Concept Terrain

=Y ] . N e AF =

Valid 1800 UCT 24 Jan

J = 2x2x2 box-mean water vapor mixing ratio over
Salt Lake City airport
x=Potential temperature (here on model first layer)
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Perturbation experiments

Analysis perturbation, 6(K) Forecast perturbation t,+6h (kg kg') 1o

Perturbation of one analysis standard deviation in 6 at the
most sensitive location, assimilated with ensemble filter.
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Effect of approximation N
Diagonal approximation Full covariance NCAR

6h sensitivity: J =QVAPOR, x =T, units=kg kg’ K
| [ of N |

Approximation under-emphasizes sensitivities local to the response. Agreement
on some sensitive points (numbered) to southwest of response.
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Ensemble Sensitivity with Localization \NCAR

af=a°{JZ[X? (x:"x: )_Tpol’fhil(hmpol’ahi +R)(y0, -

117
=ao{Jf[X? (xa"xz | ] 5xa}

« Covariance localization, or tapering, can be applied
 at the assimilation step with p
» to the regressions with «

* pis typically a function of space alone

« «ais function of space and time, here from a Bayesian
hierarchical estimate (Anderson 2007)
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Perfect Model (two scales) AN

NCAR

When only smooth/slow scales present, little difference
between univariate (scalar) and multivariate (matrix)
predictions of response to perturbation.

Sensitivity without localization Sensitivity with localization

e Scalar RMSE=2.5137e-03 e Scalar RMSE=2.2964e-03
+  Matrix RMSE=2.3823e-03 ) +  Matrix RMSE=1.9607e-03
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Nonlinear Perturbation Nonlinear Perturbation

Here observations are randomly chosen from every other gridpoint (which are un-observed for
sensitivity calculations).

MATERHORN Investigator Meeting, UND 7 Oct 2015 10



Imperfect Model N

For imperfect model, diagonal approximation results in NCAR
greater over-prediction of response; multivariate
sensitivities account for presence of fast scales in real

system, which appears as noise.
Sensitivity without localization Sensitivity with localization

e Scalar RMSE=3.1695e-01 e Scalar RMSE=2.6329e-01
+  Matrix RMSE=1.6375e—-01e +  Matrix RMSE=6.3356e—-02 :.
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Nonlinear Perturbation Nonlinear Perturbation

Here observations are assimilated on half of domain that is data void; more impact from
observations because greater uncertainty in analysis.
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NCAR

Model Inadequacy

Quantifying model error with ensemble data
assimilation



Bias In state estimation A
NCAR

A scalar example (adapted from Dee and DaSilva 1998):
Consider The background/forecast is biased but the
observation is not.

Then The background error variance is biased, but

the observation error variance is not.

If B, is considered, the If B, is ignored, the
analysis is unbiased: analysis is biased:
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Systematic model errors N\
NCAR

 Persistent structures or time-means in the innovations or increments in data
assimilation, or tendencies in the model, result from systematic error.

* Obijective data assimilation cannot eliminate bias.

For 0]% =0’ =0’ and an unbiased observation:

1 1
X, =X, =§(xf +y0)—xf =§(y0 —xf)

28 (5, ~x,J-E (3, -3, )= E(y, -5, -&,)=[E(3)~E(x)- B

=|E(x,)+E(e,)-E(x,)-B,] @

Bias can S be estimated from analysis increments or background.

Not immediately clear whether the observations or the model is biased,
but we can extract the statistics given an observation network containing
unbiased observations.
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Systematic observation errors N\
NCAR

 Persistent structures or time-means in the innovations or increments in data
assimilation, or tendencies in the model, result from systematic error.

* Obijective data assimilation cannot eliminate bias.

2

For o

=02 =0 and an unbiased forecast:
1 1

f =§(xf +y0)_xf =5(y0 _xf)

Bias can S be estimated from analysis increments or background.

Not immediately clear whether the observations or the model is biased,
but we can extract the statistics given an observation network containing
unbiased observations.
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Predicting (independent) observations at layer-1 (~15 m AGL) \
NCAR

« Bias magnitudes of winds
smaller when assimilating

» Biases here are the generally the
same sign as biases in
observation space

Nothing looks too strange

« Bias generally of the same sign
as at shelter or anemometer

« Magnitude of bias not reduced as
clearly as at shelter or
anemometer

« Except: FREE-SLR less biased
in temperature than DA-SLR

EESEEZEES.SW (maybe a little strange)

I DA-SLI-SW
[ IDA-SLR-SW

< Night Day -
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Analysis increments N

- NCAR
I W

0o EEDASLA Signs that covariances can
I DA-SLI-SW .
. [ DA-SLR-SW be b|ased:
e Some increments are

acting to increase the bias

(@]
»

Increment 7'15 (K)

Possible causes:

* Nonlinear statistics in
regressions underlying the
assimilation (not the case
here)

* Poor parameterization of
surface-layer profiles

Increment @ 15 (9/9)
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NCAR

Model Inadequacy

Parameter estimation to address parametric
model error (and systematic observation error)



Parametric errors A
NCAR

Theory leads to state augmentation

approach:
“Augmented” state The statistical analysis equation
is still valid; forward operators
vector and covariance matrices are
State vector modified accordingly
Vector of

parameters

 If a model prediction is sensitive to a parameter value, then
covariances between parameters and predicted observations (Gz,)
will result (G is the augmented forward operator).

« Parameter values can be modified by observations.
« Parameters can be in the model or otherwise arbitrary.

MATERHORN Investigator Meeting, UND 7 Oct 2015 19



Increment T15 (K)
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Even with parameter estimation, analysis increments
can be systematically in the wrong direction.

DA increasing the biases via the analysis increments.

Suggests structural errors.

MATERHORN Investigator Meeting, UND 7 Oct 2015

20



Parameter estimation (3D model) \NCAR

L >
o o

N
o
RMSI, Total Spread (K)

3
o)
@
o
o3
w
I
o
|_
%)
=
o

-
o

METAR 2-m T METAR 2-m T
Constant C,;, Variable C;;

Mean RMS Innov. = 3.01 K Mean RMS Innov. = 2.96 K
Mean Tot. Spread = 3.33 K Mean Tot. Spread = 3.33 K
(Means discard 20 Sep) (Means discard 20 Sep)
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Forward operators L\
NCAR

» Give predicted observations from forecasts
model prognostic variables:

o Simple:
— Interpolation to a radiosonde observation

— Diagnostic surface-layer variables (2-m T, 10-m
winds) and interpolation to horizontal location)

« Complex:
— Satellite radiances (also nonlinear)
— GPS radio occultation (also nonlinear)
— Doppler winds
— Radar reflectivity (also nonlinear)
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Observing scales AN

Skamarock (2004) NCAR
An observation “sees” all S (':rgi
scales of motion slower than A
its sampling rate. Lindporg {125%) eqn 7}
Most observations sample WRF CONUS
well below the numerically dx=22km
diffusive range. \évai ?anix T
Most useful observations WRF BAMEX e

contain energy projecting dx =4 km

onto scales above the
diffusive range.

Examples:
* 10-minute average
surface obs
» Packages on small
UAVSs. - 1075 1074

Wavenumber (radians m-1)
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Progress summary BN
NCAR

 Ensemble sensitivities for observation network
design in complex terrain

* Model error quantification and parameter
estimation for land-atmosphere coupling
errors

« Parameter estimation for near-surface
observation error estimation (Raquel Lorente-
Plazas)
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Statistical-analysis equation A
NCAR

P,=(e.e,)=(1-KH)B

Under assumptions of Gaussian, unbiased errors, and
linear operator H, this equation holds for:

* Optimal interpolation

 Variational minimization

« Kalman filters

« Other linear filters
Differences arise when trying to estimate the error

statistics, or when additional constraints are imposed.
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Effect of hypothetical 6 observation L\

oJ = 9, K(y’ - hx")
0x

e

K =P'h" (hPh" + R)'1

-4.00E-04

E"
~
<
S -

Can test use of sensitivities to
predict the change in forecast
metric resulting from a
hypothetical observation.
Analysis increment can come
from:
« assimilating synthetic obs
e approximation with

univariate linear regression

Assimilate

—
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