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Topics 

•  Data assimilation (ensemble) 
•  Ensemble sensitivities for observing 

strategies) 
•  Model error estimation 
•  Parameter estimation 
•  Observation bias estimation 
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Ensemble Sensitivities 
 

Network design for fine-scale near-surface 
forecasts in complex terrain 



Ensemble sensitivity analysis (ESA) 

•  Identify dynamically relevant covariance structures in 
space and time 

•  Propose observing strategies for mesoscale, short-range 
forecasts in complex terrain 

•  Sensitivity scales (time and space) to infer predictability 
scales 

•  Predictability of specific phenomena 
•  Open issues: 

–  Sampling error 
–  Linearity assumptions in complex terrain 

∂Je
∂xa

How does the change in a set of initial state 
variables xs change a forecast metric J? 
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Ensemble Sensitivity Background 

•  Ancell and Hakim (2007) showed 
theoretical equivalence between 
adjoint and ensemble sensitivity for 
linear perturbations and Gaussian 
statistics 

•  Relies on linearization about an 
ensemble-mean trajectory 

•  Rigorous application has so far 
been limited to large-scale (smooth) 
and integrated processes where 
strong linear relationships are more 
likely 

An optimal ensemble data 
assimilation system provides 

an appropriate sample 

where the independent variable is the innovation, y !
H(xb), the dependent variable is the forecast metric,
and the “slope” is given by the covariance between the
forecast metric and the model estimate of the observa-
tion, J(HXb)T, divided by the covariance of the inde-
pendent variables (innovation covariance). For a single
observation, the innovation, innovation covariance, and
slope are all scalars, and the calculation can be evalu-
ated rapidly. When the forecast metric is a function of
the forecast state vector, we shall refer to "J as the
change in the forecast metric associated with the obser-
vation, and when the forecast metric refers to a forecast
error, we shall refer to "J as the observation impact.

In addition to assessing the change in the expected
value of the metric, we also assess the change in the
forecast-metric variance due to observation assimila-
tion via (Ancell and Hakim 2007)

!" # !J$HXb%T$HPbHT & R%!1HXbJT. $6%

For a single observation, this expression can be evalu-
ated as a product of two scalars: the inverse of the
innovation variance, (HPbHT & R)!1, and the forecast-
metric-observation-estimate covariance, J(HXb)T. Fur-
thermore, we observe that (6) is negative definite since
the right-hand side is proportional to the square of the
forecast-metric-observation-estimate covariance.

These predictions of "J and "' are computed from
the ensemble without the buoy and are verified against
perturbed forecasts generated from an analysis where a
single buoy pressure observation is withheld. We pro-
ceed by describing the change in the average SLP due
to assimilating the buoy during one case characterized
by an eastern Pacific cyclogenesis event, and then sum-
marize all 30 cases.

Figure 5a shows the UW EnKF ensemble-mean SLP
analysis and forecast sensitivities for 1200 UTC 5 Feb-
ruary 2005. A frontal wave is situated on the eastern
edge of a deeper cyclone near the international date
line; during the next 24 h, this wave deepens as it moves
east toward the North American coast. Forecast sensi-
tivities are maximized along the eastern edge of the
frontal wave near buoy 46036 (dot). Increasing (de-
creasing) the SLP in this region of the analysis by 1 hPa,
which amounts to shifting the frontal wave to the north-
west (southeast), leads to a 1.5-hPa increase (decrease)
in the forecast metric.

The difference between the control and no-buoy
analysis and their resulting 24-h forecast differences are
shown in Figs. 5b and 5c, respectively. For the control
analysis, the SLP is 0.4 hPa lower to the south of the
wave and 0.2 hPa higher to the north of the wave; thus

FIG. 5. (a) Sensitivity of the western WA 24-h SLP forecast to
the SLP analysis (shading; hPa hPa!1) and the UW EnKF en-
semble-mean analysis of SLP (contours; hPa) for the forecast ini-
tialized at 1200 UTC 5 Feb 2005. (b) Difference between the
no-buoy ensemble-mean analysis SLP field and the control en-
semble-mean analysis SLP field at 1200 UTC 5 Feb 2005 (shading;
hPa). The no-buoy ensemble-mean analysis of SLP is given by the
solid lines (hPa). (c) As in (b), but for the 24-h forecast of SLP
valid at 1200 UTC 6 Feb 2005.

670 M O N T H L Y W E A T H E R R E V I E W VOLUME 136

Fig 5 live 4/C

Sensitivity of 24-h sea-level pressure 
(SLP) over western Washington to SLP 
initial conditions, and ensemble-mean 
SLP (from Torn and Hakim 2008). 
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Moisture sensitivity to temperature 

J = 2x2x2 box-mean water vapor mixing ratio over 
Salt Lake City airport 
x=Potential temperature (here on model first layer)

  

Sensitivity 
(kg kg-1 K-1) 

∂Je
∂xa

Concept Terrain 

Valid 1800 UCT 24 Jan 
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Perturbation experiments 
Analysis perturbation, θ(K) Forecast perturbation t0+6h (kg kg-1) 

Perturbation of one analysis standard deviation in θ at the 
most sensitive location, assimilated with ensemble filter.   
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Effect of approximation 
Diagonal approximation Full covariance 

Approximation under-emphasizes sensitivities local to the response.  Agreement 
on some sensitive points (numbered) to southwest of response. 

MATERHORN Investigator Meeting, UND 7 Oct 2015 8 



Ensemble Sensitivity with Localization 

δJ =α ! Je
T Xi
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•  Covariance localization, or tapering, can be applied 
•  at the assimilation step with ρ	


•  to the regressions with α	



•  ρ is typically a function of space alone 
•  α is function of space and time, here from a Bayesian 

hierarchical estimate (Anderson 2007) 
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Perfect Model (two scales) 
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Scalar RMSE=2.5137e−03
Matrix RMSE=2.3823e−03
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Scalar RMSE=2.2964e−03
Matrix RMSE=1.9607e−03

Sensitivity without localization Sensitivity with localization 

When only smooth/slow scales present, little difference 
between univariate (scalar) and multivariate (matrix) 
predictions of response to perturbation. 

Here observations are randomly chosen from every other gridpoint (which are un-observed for 
sensitivity calculations). 
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Imperfect Model 

Here observations are assimilated on half of domain that is data void; more impact from 
observations because greater uncertainty in analysis.  

For imperfect model, diagonal approximation results in 
greater over-prediction of response; multivariate 
sensitivities account for presence of fast scales in real 
system, which appears as noise. 

Sensitivity without localization Sensitivity with localization 
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Model Inadequacy 
 

Quantifying model error with ensemble data 
assimilation 



Bias in state estimation 

A scalar example (adapted from Dee and DaSilva 1998): 
 
Consider 
 
 
Then 
 

  

β f = E ε f( ) ≠ 0
βo = E ε f( ) = 0

The background/forecast is biased but the 
observation is not. 
 
The background error variance is biased, but 
the observation error variance is not. 

σ f
2 = E ε f −β f( )

2"
#$

%
&'

σ o
2 = E εo

2( )

for σ f
2 =σ o

2 =σ 2 :

xa =
1
2
x f −β f + yo( )

βa = 0,   E εa
2( ) = 1

2
σ 2

for σ f
2 =σ o

2 =σ 2 :

xa =
1
2
x f + yo( )

βa =
1
2
β f ,   E εa

2( ) = 1
4
β f

2 1
2
σ 2

If βb is considered, the 
analysis is unbiased:  

If βb is ignored, the 
analysis is biased:  

MATERHORN Investigator Meeting, UND 7 Oct 2015 13 



Systematic model errors 
•  Persistent structures or time-means in the innovations or increments in data 

assimilation, or tendencies in the model, result from systematic error. 
•  Objective data assimilation cannot eliminate bias. 

•  Bias can β be estimated from analysis increments or background.  
•  Not immediately clear whether the observations or the model is biased, 

but we can extract the statistics given an observation network containing 
unbiased observations. 

For σ f
2 =σ o

2 =σ 2  and an unbiased observation:

xa − x f =
1
2
x f + yo( )− x f =

1
2
yo − x f( )

2E xa − x f( ) = E yo − x f( ) = E yo − xt −ε f( ) = E yo( )−E xt( )−β f
"# $%

                   = E xt( )+E εo( )−E xt( )−β f
"# $%= β f
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Systematic observation errors 
•  Persistent structures or time-means in the innovations or increments in data 

assimilation, or tendencies in the model, result from systematic error. 
•  Objective data assimilation cannot eliminate bias. 

•  Bias can β be estimated from analysis increments or background.  
•  Not immediately clear whether the observations or the model is biased, 

but we can extract the statistics given an observation network containing 
unbiased observations. 

For σ f
2 =σ o

2 =σ 2  and an unbiased forecast:

xa − x f =
1
2
x f + yo( )− x f =

1
2
yo − x f( )

2E xa − x f( ) = E yo − x f( ) = E yt −ε f − x f( ) = E yt( )+βo −E x f( )"# $%

                   = E xt( )+βo −E xt( )−E ε f( )"# $%= βo
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Predicting (independent) observations at layer-1 (~15 m AGL)  

ß Night  Day à 

•  Bias magnitudes of winds 
smaller when assimilating 

•  Biases here are the generally the 
same sign as biases in 
observation space 

 
Nothing looks too strange 
•  Bias generally of the same sign 

as at shelter or anemometer 
•  Magnitude of bias not reduced as 

clearly as at shelter or 
anemometer 

•  Except: FREE-SLR less biased 
in temperature than DA-SLR 
(maybe a little strange) 
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Analysis increments 

ß Night  Day à 

Signs that covariances can 
be biased: 
•  Some increments are 

acting to increase the bias 
 
Possible causes:  
•  Nonlinear statistics in 

regressions underlying the 
assimilation (not the case 
here) 

•  Poor parameterization of 
surface-layer profiles 
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Model Inadequacy 
 

Parameter estimation to address parametric 
model error (and systematic observation error) 



Parametric errors 

Theory leads to state augmentation 
approach: 
 
z = x

p
!

"
#
#

$

%
&
&

x
p

“Augmented” state 
vector 
State vector 
Vector of 
parameters 

The statistical analysis equation 
is still valid; forward operators 
and covariance matrices are 
modified accordingly  

•  If a model prediction is sensitive to a parameter value, then 
covariances between parameters and predicted observations (Gzb) 
will result (G is the augmented forward operator).  

•  Parameter values can be modified by observations. 
•  Parameters can be in the model or otherwise arbitrary. 
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Bias and analysis increments 

•  Even with parameter estimation, analysis increments 
can be systematically in the wrong direction. 

•  DA increasing the biases via the analysis increments. 
•  Suggests structural errors. 
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Parameter estimation (3D model) 

METAR 2-m T 
Variable CZIL 
Mean RMS Innov. = 2.96 K 
Mean Tot. Spread = 3.33 K 
(Means discard 20 Sep) 

METAR 2-m T 
Constant CZIL 
Mean RMS Innov. = 3.01 K 
Mean Tot. Spread = 3.33 K 
(Means discard 20 Sep) 
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Forward operators 
•  Give predicted observations from forecasts 

model prognostic variables:  
•  Simple: 

–  Interpolation to a radiosonde observation 
– Diagnostic surface-layer variables (2-m T, 10-m 

winds) and interpolation to horizontal location) 
•  Complex: 

– Satellite radiances (also nonlinear) 
– GPS radio occultation (also nonlinear) 
– Doppler winds 
– Radar reflectivity (also nonlinear) 

Hxf ≈ h(xf )
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Observing scales 
Skamarock (2004) 

Kinetic energy spectra 

•  An observation “sees” all 
scales of motion slower than 
its sampling rate. 

•  Most observations sample 
well below the numerically 
diffusive range. 

•  Most useful observations 
contain energy projecting 
onto scales above the 
diffusive range. 

Examples: 
•  10-minute average 

surface obs 
•  Packages on small 

UAVs. 
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Progress summary 

•  Ensemble sensitivities for observation network 
design in complex terrain 

•  Model error quantification  and parameter 
estimation for land-atmosphere coupling 
errors 

•  Parameter estimation for near-surface 
observation error estimation (Raquel Lorente-
Plazas) 
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Statistical-analysis equation 
xa = xb +K yo -Hxb( )

K = BHT

HBHT +R
B = ebeb

T ,    R = eoeo
T

Pa = eaea
T = (I -KH)B

Under assumptions of Gaussian, unbiased errors, and 
linear operator H, this equation holds for: 
•  Optimal interpolation 
•  Variational minimization 
•  Kalman filters 
•  Other linear filters 
Differences arise when trying to estimate the error 
statistics, or when additional constraints are imposed. 
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Effect of hypothetical θ observation 

δJe =
∂Je
∂xa

K(yo −hxa )

K = PahT hPahT +R( )
−1

Can test use of sensitivities to 
predict the change in forecast 
metric resulting from a 
hypothetical observation. 
Analysis increment can come 
from: 
•  assimilating synthetic obs 
•  approximation with 

univariate linear regression 
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