Sensitivity of Near-Surface Temperature Forecasts to Soil Properties over a Dryland Region in Complex Terrain

Jeffrey Massey

University of Utah Co-authors: Jim Steenburgh, Sebastian Hoch, and Jason Knievel

Motivation

• Many modeling systems have tremendous difficulty accurately forecasting near-surface temperatures.

• A nighttime warm bias is one of the more common model errors, especially over the western US.

• Better near-surface temperature forecasts will increase the predictability of near-surface wind/turbulence, air pollution transport, and dust emissions.

A REAL PROPERTY OF TAXABLE PARTY.

Mesonet observations from 1200 UTC 22 September 2011

4DWX-DPG and WRF configuration

Domains	30, 10, 3.3, 1.1 km	12, 4, 1.3 km	
Shortwave radiation	Dudhia		
Longwave radiation	Rapid radiation transfer model		
Boundary Layer	YSU		
Surface Layer	Monin-Obukhov		
Land Surface	Noah Model		
Cumulus convection	Kain-Fritsch on domains 1 & 2		
Microphysics	Lin		
Vertical Levels	37		
Initial/ Boundary Conditions	GFS		

WRF 2-m Temperature Bias Errors

Sagebrush 2-m Temperature Bias Errors Mean sagebrush bias: -1.0°C Mean playa bias: -0.6°C Playa Sagebrush 0000 UTC Wind 8 6 Wind Speed (m s⁻¹ Temperature Bias (°C) 2 0 700 hPa 20 10 -6 09 20112012

Playa

4DWX-DPG Late Afternoon Mean

Playa

4DWX-DPG Early Morning Mean

WRF Landuse and Soil Types

Landuse

Other Playa Sparsley Veg Water Mixed Forest Needleleaf Forest

Broadleaf Forest

Grassland

Shrubland

Cropland/Grassland

Shrubland surrounds the playa

Soil Types

Loamy soils surround the playa. Specifically:

1. Loam

- 2. Silt Loam
- 3. Sandy Loam
- 4. Silty Clay Loam

Playa vs. Surrounding Desert

Differences between the playa and surrounding desert (Rife et al. 2002):

 Albedo – Playa has a higher albedo than the surrounding desert.

2. <u>Vegetation</u> – Playa has less vegetation than surrounding desert.

3. <u>Latent heat flux</u> – Playa has higher soil moisture so it has a higher latent heat flux.

4. <u>Soil thermal conductivity</u> – Playa has a higher soil thermal conductivity compared to surrounding desert.

5-cm Soil Moisture

Soil Climate Analysis Network (SCAN)

- Relatively dense network over Northern Utah
- Stations cover wide variety of soil types
- Station located in Sagebrush area

Soil Thermal Conductivity

Thermal Conductivity (W m⁻¹ K⁻¹) Silt Loam Plava Johansen 1975 (J75) -Sandy Loam 1.5 Loam less spread among soils Silty Clay J75 and less sensitivity to soil 0.5moisture. 0.10.20.3 0.40.5 0 Volumetric Soil Moisture (m3 m-3 Thermal Conductivity (W m⁻¹ K⁻¹) Silt Loam Plava McCumber and Pielke Sandy Loam 1.5 Loam 1981 (MP81) – greater Silty Clay **MP81** spread among soil types and greater sensitivity to 0.5 soil moisture. 0 0.10.2 0.3 0.4 0 0.5 Volumetric Soil Moisture (m3 m-3 Thermal Conductivity (W m⁻¹ K⁻¹) Silt Loam Plava Hybrid – Uses MP81 Sandy Loam 1.5 Loam for silt loam and sandy Silty Clay Hybrid loam, and J75 for all 0.5other soil types. 0 0.10.2 0 0.3 0.40.5 Volumetric Soil Moisture (m3 m-3

Surface Stations used for Verification

•	Silt Loam	0	Silty Clay
•	Sandy Loam	0	Other
0	Loam	•	SCAN
•	Playa	٠	EFS

Near-Surface Temperature Bias Errors

Improved soil moisture initialization and the hybrid parameterization reduce nighttime bias errors and reduce the variance of bias errors over different soil types.

MATERHORN Sagebrush Observations

Soil Thermal Conductivity

Soil thermal conductivity calculated using MP81-SCAN more closely matches observations relative to the soil thermal conductivity calculated using J75-GFS

MATERHORN Sagebrush Observations

Ground Heat Flux

Upwelling Longwave Radiation

1200 UTC Vertical Potential Temperature Profile

Hybrid-SCAN also more closely matches observed surface energy budget components and vertical temperature profiles

Conclusions

- Initializing 5-cm soil moisture with observed values and using the MP81 soil thermal conductivity parameterization reduces the nighttime warm bias over silt loam and sandy loam soils.
- These results were consistent in several other cases we tested over DPG and we anticipate similar results in other dryland regions with silt loam and sandy loam soils.
- MATERHORN observations provide additional support for these changes since all forecasted surface and subsurface variables improved.