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1 nemes

1. Terrain-induced flow: predictable or not?
* Strongly forced versus weakly forced backgrounds
* Strongly forced versus weakly forced terrain-induced flow

(perturbation flow)
* Precursors to visibility restrictions

2. Observation impact
* Observing strategies that have tangible impact on model
predictions
* Observation strategies likely different for strongly and
weakly forced background/perturbation

3. Model error/inadequacy

* Real barrier to improved predictions in some cases



—Xxperment 10cl

1. Predictability of terrain-induced flows
* Spatial predictability scales \
* Temporal predictability scales
2. Potential for error reduction
* Reduced mmitial-condition uncertainty reduces forecast
uncertainty; or

* Already near limits of predictability
3. Propose and test observing strategies /

|]apow Joapiaduwil 1o 10818

* Reduce forecast uncertainty
* Nearer to predictability limits
4. Characterize and quantlfy importance of model madequacy

* Difference between perfect-model/synthetic obs studies; and

* Real-data cases following field programs
* Systematic increments in data assimilation cycle



COAMPS

WRF

TLM/Adjoint

Ensemble filter

* COAMPS, Tangent linear model (TLM)/
Adjont, and ensemble-filter expertise at NRL

* WREF and ensemble-filter expertise at NPS
* Capability exchange, division of tasks TBD
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* Soil moisture perturbations applied at

scales =64 km (16 A X).

* NWP model (WRF) simulations to
quantify sensitivity.

* At 24-h, energy in the vector wind
differences can equal or exceed energy in the
wind itself.

* Interpret as a loss of predictability in a
perfect-model context.

* Loss of predictability apparent at spatial
scales an order of magnitude larger than the
perturbation scale.

Predictability here is determined
classically (Lorenz) with quadratic

norms and identical twin experiments



\easuring predictapblity: sensitivities

B T
o e o ] adjoint
ensitivity: ox, | X,
- =i
(9]8 59 dlag(<(5X 6XT>):| <5X 6XT> aJ & COV(JQXO) ensemble
- i s 0x,  var(x,)

X,
J 1s response/cost function at time ¢

X 1S state vector

L 1s tangent-linear model

* Can be computed by an ensemble or with and adjoint
*  Small imtial perturbations 0x,
* Linearity (statistical or dynamical)

* Sensitivity structures can be decomposed/analyzed
* Spectrally

* Some other bases
* Composites and variability

* Easily extended to observation impact (Ancell and Hakim 2007)



—Irst yvear: modeling I -REX expernments

2006 IOP 6
* 24-26 March: strong downslope
* 27-28 March: mountain-valley thermal flows

* Perfect-model experiments
* Proxy for the real atmosphere
* Optimistic estimates of error growth
* Good first step for scoping sensitivity and obs
impact
* Ensemble data assimilation
* Small and spatially consistent initial perturbations
* Clean investigations of open issues in predictability
and sensitivity



—Nsemple sensitivity: open 1ISsSuUes

* Sampling
* Accuracy and uniqueness of solutions
* Can't be eliminated, can be mitigated
* Begin with convergence studies on ensemble size

* Break-down of linearity assumptions

* Local linearity in cov(J,x) needed

* Linear dynamics nof needed

 Will break down at some unknown forecast time
* Mesoscale predictions

* More scale interactions may exacerbate sampling
and linearity 1ssues
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NPS: J. Hacker, K. Neilsen

Postdoc (to be hired); advising shared with J.
Doyle at NRL

Contracted HPC support as needed (none so far).
Students (unfunded): 1 USAF PhD, 1 USAF
Masters, 1 USN Masters (possible)
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