

The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program: A Progress Report

By

H.J.S. Fernando

Civil and Environmental Engineering and Earth Sciences

and Aerospace and Mechanical Engineering Univ. of Notre Dame

ONR FY 2011 Multidisciplinary University Research Initiative (MURI)

TOPIC #7:

Improved Meteorological Modeling in Mountain Terrain

Topic Chiefs: Dr. Ronald J. Ferek and Dr. Daniel Eleuterio (ONR)

Additional support:

Army Research Office (Dr. Gordon Videen and Dr. Walter Bach)

> Air Force Weather Agency through ARL

www.nd.edu/~dynamics/Materhorn

Principal Investigators:

H.J.S. Fernando

(University of Notre Dame)

Eric Pardyjak

(University of Utah)

Stephan De Wekker

(University of Virginia)

Josh Hacker

(NPS/NCAR)

Tina Katopodes Chow

(Univ. California, Berkeley)

Multidisciplinary University Research Initiative MURI

www.nd.edu/~dynamics/materhorn 60592 since 1 Feb 2013

Acknowledgments

- University of Utah Team Pardyjak, Hoch, Pu, Steenburgh and Whiteman – many contributions including logistics for field work
- US Army Dugway Proving Ground John Pace and Dragan Zajic – continued support for MATERHORN-Fog
- Advisory Committee Dave Emmitt, John Pace and Vanda Grubišić for continued support for the group
- John and Sarah Pace for their kind hospitality

Major accomplishments (since AMS 2014)

- Two year MURI option was granted with:
 - No weaknesses
- Attracted support from three DOD agencies for MATERHORN – ONR, ARO and AWA
- So far,
 - 20 papers published or accepted;
 - 15 submitted;
 - 10 Invited conference presentations;
 - 7 conference papers;
 - 101 conference presentations

Summary (End of 3rd year)

- Senior Pls: 11
- Research faculty: 4 5
- Technical staff: 8
- Post docs: **&** 13
- Graduate Students : 18 15 PhD and 7 MS (Total 22)
- Undergraduate Students: 13 22
- Collaborators (proposal): 5 (supported 2)
- Collaborators joined: 11

(total supported fully or partially: 67 82)

MATERHORN has four components working symbiotically across institutions and disciplines

Modeling Experiments Technology Development Parameterizations

(MATERHORN-M) (MATERHORN-X) (MATERHORN-T) (MATERHORN-P)

MATERHORN-X (Fall 2012, Spring 2013, Fog 2014)

MATERHORN Fall and Spring Granite Mountain Atmospheric Science Test bed (GMAST) US Army Dugway Proving Ground (1252 sq. miles)

> Calm Winds (FALL) – October 1 - 31, 2012 Synoptic Winds (SPRING) – May 1-30, 2013

20 Intensive Operational Periods IOPs (24-36 hrs)

5 Intensive Operational Locations IOLs

~ 55 TB Data from MATERHORN 1 and 2 (stored in ND server)

MATERHORN - Fog November 1 2014 (?) – January 20, 2015 10 IOPs 2 Locations Heber Valley, Salt Lake City Airport <u>Canada Environment</u> is slated to join

MATERHORN-X

Overview of flows

Summary of some results

$$L^{\alpha}_{Macro} \quad --> \ L^{\beta}_{Macro} \quad ---> L^{\gamma}_{Macro} ---> L^{\alpha}_{Meso} \quad \dots \dots ---> L_{Kolmogorov}$$

Gravity Currents Collide

4:41 UTC (22:41 MDT)

4:54 UTC (22:54 MDT)

5:11 UTC (23:11 MDT)

Hocut, Hoch and Wang

Secondary Collisions

From: Chris Hocut

MATERHORN-T

...pushing the technological frontiers

Unmanned Aerial Vehicle

- Temperature, humidity, wind velocity
- Turbulent components (combo probe) up to Kolmogorov
- Onboard data acquisition
- Automated flight tracks
- Fog droplet size distribution (FASS)

Sonic-hotwire Combo System (2-20 kHz)

- Developed and deployed
- unique turbulence information, dissipation scales
 - Allow myriad of turbulence and multiscale studies

For stratified flows -- Beware of using classical Kolmogorov laws in estimating turbulent kinetic energy dissipation using sonic-derived spectra

$$c \approx \frac{NH}{p\pi} \approx \frac{0.15 \times 20}{1 \times \pi} \approx 1 \, ms^{-1} \, (long \, Waves ?)$$
$$U \approx 4 \, ms^{-1}$$

Cannot be long waves!

 $kU \approx 10(Hz)$ $k \approx 15 m^{-1}$ $\lambda \approx 0.4 m$

Triple lidars

Triple Lidar deployment

Wang, Creegan, Fenton, Hocut, Hoch....

Virtual Tower using Triple Lidar!

Examples of vertical profile (virtual towers) 3D wind vectors retrieved from coordinated triple Doppler wind lidars scanning on 7 October 2012. The down valley low-level jet was evident in these virtual towers at 11.61 to 12.77 UTC (0537 to 0646 MDT). The horizontal distance between two virtual towers is 134 m.

Long-range WindScanner system Courtesy: Nikola Vasiljević

With master computer

MATERHORN-P

Improve mixing parameterizations via improved physics

(observations, high resolution simulations, laboratory experiments)

Implement them in models

Dividing Streamline Concept (DSLC)

1

A conceptualization of source pollution within a stably stratified flow collapsing into a thin layer, and becoming entrained in the flow.

Theoretical extensions: Log Vel. Profile

Remember assumptions:

 $= 1 - \gamma Fr$

- 1.
- Constant density gradient $\beta = \frac{\partial \rho}{\partial z}$ Velocity profile: $U_0 \longrightarrow u(z) = \frac{u_*}{\kappa} \ln\left(\frac{z}{z_0}\right)$ 2.

$$\frac{1}{2}\rho\left(\frac{u_*}{\kappa}\ln\left(\frac{H_s}{z_0}\right)\right)^2 = g\int_{H_s}^h(h-z)(-\beta)dz$$

$$x = ye^{y}$$

Lambert W Function

Buoyancy Scale
$$L_b = \frac{u_*}{N\kappa}$$

May 30th (Stratified): Visualization

Red smoke release during May 30th, 2013. The still photos are taken at approximately 30, 70, 80, and 120 seconds after the release of the smoke canisters. The dashed green line is a visual guide to approximate .

MATERHORN-M

Example - Improving Surface Forecasts

<u>Issue</u>: Atmospheric models (e.g., WRF) are too warm at night over the sagebrush region at DPG (systemic)

<u>Implications</u>: Poorly simulated NBL -> errors in the prediction of near-surface winds and turbulence, dust emissions and transport, etc.

Massey, Steenburgh, Pu (Utah), Hacker (NPS/NCAR)

Evaluation of PBL Schemes in WRF using MATERHORN Data (started with Massey et al. surface properties)

Dimitrova et al. BLM submitted

- Yonsei University YSU (Hong et al. 2006)
- Asymmetric Convective Model ACM2 (Pleim, 2007a)
- Mellor-Yamada-Janjic MYJ (Janjic, 1990)
- Mellor-Yamada Nakanishi and Niino Level 2.5 MYNN (Nakanishi and Niino, 2006)
- Bougeault and Lacarrere BouLac (Bougeault and Lacarrere, 1989)
- Quasi-Normal Scale Elimination QNSE (Sukoriansky et al. 2005)

YSU Modified
$$K_m = 0.34 R i_g^{-0.02} \sigma_w^2 \left| d\vec{V} / dz \right|^{-1} K_h = 0.08 R i_g^{-0.49} \sigma_w^2 \left| d\vec{V} / dz \right|^{-1}$$

Vertical profile comparison between different PBL schemes and tethered-balloon soundings at SB site, IOP 8

TO IMPROVE IS TO CHANGE TO BE PERFECT IS TO CHANGE OFTEN

Winston Churchill

celebquote.com

Thank you

May 30th (Stratified): Movie

