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Major accomplishments 
(since AMS 2014) 

• Two year MURI option was granted with: 
• No weaknesses 

• Attracted support from three DOD agencies for 
MATERHORN – ONR, ARO and AWA 

• So far,  
– 20 papers published or accepted;  
– 15 submitted;  
– 10 Invited conference presentations;  
– 7 conference papers;  
– 101 conference presentations 



Summary (End of 3rd year) 
• Senior PIs:  11 
• Research faculty: 4  5 
• Technical staff: 8 
• Post docs: 8   13 
• Graduate Students :  18  15 PhD and 7 MS (Total 22) 
• Undergraduate Students: 13  22 
• Collaborators (proposal):  5 (supported – 2) 
• Collaborators joined: 11 
   
(total supported fully or partially: 67  82) 
 

 
 
 
 



Modeling               (MATERHORN-M) 
Experiments         (MATERHORN-X) 
Technology Development         (MATERHORN-T) 
Parameterizations                      (MATERHORN-P) 

MATERHORN has four components  
working symbiotically  

across institutions and disciplines 

Mat-X 



MATERHORN-X  
(Fall 2012,Spring 2013, Fog 2014) 



Test Beds 
MATERHORN Fall and Spring   

Granite Mountain Atmospheric Science Test bed (GMAST)   
  US Army Dugway Proving Ground (1252 sq. miles)   

 
Calm Winds (FALL) – October 1 - 31, 2012 

Synoptic Winds (SPRING) – May 1-30, 2013 
 

20 Intensive Operational Periods IOPs (24-36 hrs) 
 

5 Intensive Operational Locations  IOLs 
 

~ 55 TB Data from MATERHORN 1 and 2 (stored in ND server) 
 
 

MATERHORN - Fog 
November 1 2014 (?)  – January 20, 2015 

    10 IOPs 
2 Locations  

Heber Valley, Salt Lake City Airport 
Canada Environment is slated to join 
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MATERHORN-X 

Overview of  flows 
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Materhorn  - Fall 
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Gravity Currents Collide 

4:41 UTC (22:41 MDT) 4:54 UTC (22:54 MDT) 5:11 UTC (23:11 MDT) 

TKE Hocut, Hoch and Wang 



Secondary  
 Collisions  

Presenter
Presentation Notes
Time series of UU LiDAR data located at the EFS-Slope site. This event is a secondary collision between the downslope (red) and valley flow (blue). (A) 5:41 UTC, a very weak thin layer of downslope flow is present . (B) 5:56 UTC, shortly after the moment of the secondary collision and the surge of turbulence observed in Figure 4.11. (C) 6:11 UTC, piled up downslope flow, flows over the undercutting valley current.  please use arrows to show these features
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MATERHORN-T 

...pushing the technological frontiers 



• Unmanned Aerial Vehicle  
– Temperature, humidity, wind velocity 
– Turbulent components (combo probe) up to Kolmogorov 
– Onboard data acquisition 
– Automated flight tracks 
– Fog droplet size distribution (FASS) 

 
 

System deployed on 
tower near east slope 
of Granite Mountain 

Polarization 
Response 

Ground 
Reflections 

•  Designed, Constructed and 
Deployed  three-frequency sensor 
systems to collection RF polarimetric 
data – for moisture (RF Cross-wires) 
      -  Extensive data, two MATERHORN 
 sites, moisture calibration 
      -  Developed theoretical 
 electromagnetic modeling 



•  Sonic-hotwire Combo System (2-20 kHz) 
– Developed and deployed 
– unique turbulence information, dissipation scales  

• Allow myriad of turbulence and multiscale studies 

FASS can measure fog concentrations  
in flight at small spatial and temporal 
scales. 

•  Fog Aerosol Sampling System (FASS) 
      -   Developed the system 
      -   State of the art – on a UAV 
       -  Testing for FOG experiment 
 



Kit, Liberzon, Hocut: 
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Waves in the critical layer? 
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Triple lidars 



Triple Lidar deployment 

Fig. 3. 7 October 2012 setup of three Doppler wind lidars from ARL (green), UND (blue), and UU (red). 
The left panel is a 3D depiction of RHI scans from three Doppler wind lidars. The right panel is a latitude, 
longitude and altitude coordinate for three Doppler wind lidars. Note that a 32 m meteorological tower 
(ES2) with a 28 m AGL sonic anemometer was located between the UND and UU lidars. 

New emphasis in MATERHORN-T 

Wang, Creegan, Fenton, Hocut, Hoch….  



Virtual Tower using Triple Lidar! 

Examples of vertical profile (virtual 
towers) 3D wind vectors retrieved 
from coordinated triple Doppler 
wind lidars scanning on 7 October 
2012. The down valley low-level jet 
was evident in these virtual towers 
at 11.61 to 12.77 UTC (0537 to 
0646 MDT). The horizontal distance 
between two virtual towers is 134 
m. 



DTU Wind Energy, Technical University of Denmark 
    

    
  

Long-range WindScanner system 
Courtesy: Nikola Vasiljević 
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Master 
computer 

With master computer 
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Presentation Notes
The Ph.D. project focused on the development of a system of coherent Doppler scanning lidars, known as the long-range WindScanner system, for three-dimensional measurements of wind velocity fields within a large volume of the atmospheric boundary layer.






MATERHORN-P 

 
Improve mixing parameterizations 
via improved physics  
 
(observations, high resolution 
simulations, laboratory experiments)  
 
Implement them in models 
 



Based on energy arguments: 

The kinetic energy of the 
parcel far upstream at 

elevation Hs  

Sheppard (1956) 

Sheppard’s Equation: 

The potential energy gained by the parcel in being lifted from the 
dividing streamline H, to the top of the hill h through the density 
gradient ∂ρ/∂z 

1
2𝜌𝜌 𝑈𝑈0 𝐻𝐻𝑠𝑠

2 = 𝑔𝑔� ℎ − 𝑧𝑧 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑑𝑑𝑑𝑑

ℎ

𝐻𝐻𝑠𝑠
 

A conceptualization of source pollution within a stably stratified flow collapsing into a thin layer, and becoming entrained in the flow.  

(1) 

Dividing Streamline Concept (DSLC) 
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Theoretical extensions: Log Vel. Profile 

Remember assumptions: 
1. Constant density gradient 
2.    Velocity profile: 

1
2𝜌𝜌
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2
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−−−−−−−→   𝑢𝑢 𝑧𝑧 =  
𝑢𝑢∗
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𝑧𝑧
𝑧𝑧0

 
𝛽𝛽 =
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Lambert W Function 
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Red smoke release during May 30th, 2013. The still photos are taken at approximately 30, 70, 80, 
and 120 seconds after the release of the smoke canisters. The dashed green line is a visual guide to 
approximate . 

Movie 1: Red smoke release. 

May 30th (Stratified): Visualization 
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MATERHORN-M 



Example - Improving Surface Forecasts 

Issue: Atmospheric models (e.g., WRF) are too warm at night over the  
sagebrush region at DPG (systemic) 

 
Implications: Poorly simulated NBL -> errors in the prediction of 

near-surface winds and turbulence, dust emissions and transport, etc. 

Massey, Steenburgh, Pu (Utah),  Hacker (NPS/NCAR) 

Presenter
Presentation Notes
Left: Dugway area, stations in blue are playa stations, red are sagebrush stations
Right: Mean errors for playa (blue) and sagebrush stations (red) showing very large warm biases in the early morning (1200 UTC/0500 MST) over the sagebrush area.  
Similar errors have been observed in other regions.  There are implications for PBL strength and surface wind and turbulence forecasts as well – as well as issues getting dust emissions and transport right in models that attempt to parameterize this.



Evaluation of PBL Schemes in WRF using MATERHORN Data 
(started with Massey et al. surface properties) 

• Yonsei University - YSU (Hong et al. 2006)  
• Asymmetric Convective Model - ACM2 (Pleim, 2007a) 
•  Mellor-Yamada-Janjic - MYJ (Janjic, 1990) 
• Mellor-Yamada Nakanishi and Niino Level 2.5 – MYNN (Nakanishi and Niino, 2006) 
•  Bougeault and Lacarrere - BouLac (Bougeault and Lacarrere, 1989) 
• Quasi-Normal Scale Elimination - QNSE (Sukoriansky et al. 2005) 

12020340
−−= dz/VdRi.K w

.
gm


σYSU Modified  

12490080
−−= dz/VdRi.K w

.
gh


σ

Dimitrova et al. 
BLM submitted 



Vertical profile comparison between different PBL schemes 
and tethered-balloon soundings at SB site, IOP 8 

Presenter
Presentation Notes
for IOP8, October 18, 2012 at 2203-2228 MDT







Thank you 



Movie 3 : Full flow visualization movie. 

May 30th (Stratified): Movie 
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